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Introduction

High-energy Quantum Chromodynamics (QCD) is now a topic at the center of the debate
from the theoretical and experimental point of view, largely because of the opening of the
Large Hadron Collider in 2007. This new large accelerator will have an energy in the center-
of-mass system equal to

√
s = 14 TeV and is expected to be the scene of important events

for physics.

Firstly, the energy available will allow the production of heavy particles such as the wanted
Higgs boson or other exotic particles. Secondly, we could test high-energy theories such as
supersymmetry or string theory but also simply check the reliability of our good old Stan-
dard Model for which the Higgs is a needed ingredient that must be found to confirm it.
Theoretically, high-energy calculations lead to simplifications and relatively good predictions
especially in the domain of hard interactions even if there are some details in the theory that
have to be improved. High-energy physics is then a new, fascinating playing field for theorists
and experimentalists alike.

Furthermore, high-energy calculations and particle production in QCD constitute a vast topic
and, in this work we shall concentrate on one aspect, which we believe to be an interesting
regime for particle production: diffractive physics and how it can lead to Higgs boson pro-
duction. The second part of this work will use a different approach to QCD. Ones knows that
perturbative theories are a really useful tools in QCD but unfortunately they are not suffi-
cient to solve all the problems. Confinement, the structure of heavy particles and the gluon
exchanges need more than perturbative calculations, i.e. the introduction of non-perturbative
effects in order to describes the soft regime of interactions. Hence, the last chapter of this
work will be a incursion into non-perturbative calculations.

We think of this work as a basis, a kind of manual or short report on topics, tools and
methods for diffractive high-energy calculations and as an example of what is possible to do,
but also as a bridge to new approaches to the introduction of non-perturbative effects and to
more complex calculations.



Chapter 1

Diffractive production in physics

In a few words, diffraction is characterized by the production of particles without changing
the quantum numbers of the colliding nucleons. Such a production is also characterized by
a large rapidity gap between the produced hadrons and it was suggested by Bjorken [1] as
a means of detecting new physics in hadron-hadron or hadron-lepton collisions. Diffractive
scattering accounts for an important part of the total cross section of scattering processes
and leads to a very clean detection of the products. This chapter is an introduction to the
diffractive production of particles and to its use in the production of the Higgs boson.

In this chapter, we first define diffraction and explain its interests. In the second section, we
discuss present problems with diffractive QCD predictions. At the end, we come to the topic
on interest and discuss the implication of diffraction on Higgs production.

1.1 Definition of diffraction

Let us begin by a reminder of rapidity and of its role in hadronic scattering.

The rapidity y is defined by

y =
1
2

log
E + pz

E − pz
, (1.1)

where E and pz are respectively the energy of the particle and the component of the momen-
tum in the z-direction also called the longitudinal momentum. This is the natural relativistic
velocity variable according to its transformation property under a boost along the real axis [2].
High-energy hadronic events usually lead to an approximately flat distribution of their final-
state hadrons in rapidity but, in the case of diffractive processes, the products are very well
separated as we draw in Fig. 1.1. This particularity has several interests that we discuss in
the next section but before that we have to define diffraction.

Hadronic diffractive processes are reactions which takes place at high energy and in which
the particles or the ensemble of particles scattered have the same quantum numbers as the
incident particles [3]. This is possible only if the exchange has the quantum numbers of the
vacuum. Here, the trajectory is called the pomeron and in practice, diffractive reactions are
characterized by a large, non exponentially suppressed, rapidity gap in the final state as in
Fig. 1.1.b . A substantial fraction of the total cross section is due to diffractive reactions and
there are three different types of diffractive processes:
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Figure 1.1: Distribution in rapidity dN/dy of the products of a central hadronic scattering
(a) and a diffractive hadronic scattering (b).

1. Elastic scattering: Both incoming particles emerge intact in the final state with no
loss of energy. See Fig. 1.2.a.

2. Single diffractive scattering: One of the incoming particle emerges almost unscathed
with a small loss of energy. See Fig. 1.2.b.

3. Double diffractive scattering: Both of the incoming particles scattered and final
particles have the same quantum number of the two initial particles. See Fig. 1.2.c.

a a aa

b b b b b

∆ ∆∆

p p p
X X

Y

Figure 1.2: The three types of diffractive processes. The final states are well separated
in rapidity and the the zigzag lines denote the exchange of a trajectory with the vacuum
quantum numbers.

For diffraction processes

MX,Y ¿ √
sab, (1.2)

the masses of the final states are much smaller than the energy in the center-of-momentum
frame, sab. The essential variable is the fraction of momentum lost by the initial particle xIP :
if p is the four-momentum of the incoming proton then

∆ ∼ xIP p, (1.3)

The diffractive region is where xIP is small enough that pomeron exchange dominates1 and
this is the case for high-energy region.

1As we explain in the next section, the pomeron trajectory and the exact nature of the pomeron are
unsolved problems in QCD.
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1.1.1 A QCD laboratory

Diffraction processes provide a QCD laboratory where we can investigate several aspects of
QCD dynamics, soft and hard interactions, exotic particle production, non-perturbative ef-
fects or the high-energy behavior of the cross section. We will now come to the interest of
the study of diffractive processes.

The first step of diffraction was the prediction of the behavior of the total cross section at high
energy. This part was also tested in elastic hadron-hadron scattering where the behavior of
the cross section at high energy is dominated by the exchange of the pomeron. It appears that
we have to separate the soft regime of energy that cannot be described by perturbative QCD
and the hard regime. The idea of hard diffraction, i.e. diffraction from models that include
perturbative QCD, was born in 1984 from Donnachie and Landshoff [4] and was developed
later by Ingelman and Schlein [5]. It was rapidly confirmed by the UA8 experiment at the
CERN pp̄ collider [6] that data were in relatively good agreement with predictions. Many
aspects of diffraction when a hard scale is present are well understood in QCD and we can
use perturbative techniques. The phenomenological description is interesting because hard
diffraction QCD allows us to formulate the dynamics in terms of quarks and gluons and gives
us the possibility from this basis to extend the problem to the non-perturbative region where
soft-diffractive processes can occur. This is the difficult topic of semi-hard diffraction that
tries to describe the change from hard scales to soft scales, i.e. from short-distance physics to
long-distance physics. Up to now, hard-diffraction QCD is used in the description of Diffrac-
tive Deep Inelastic scattering (DDIS) processes via Generalized Parton Distribution (GPD).
All these studies can be related to the structure of the proton and can help us understand
how several partons can interact, scatter or produce heavy and exotic particles as the Higgs
boson [7].

The main practical interest of diffractive production is the rapidity gap between the produced
hadrons, a large separation of the products of the collision without hadronic remnants such
that the rare particles that can be produced decay without background [8, 9]. The rapidity
distribution of the new particles is necessarily between the two hadronic remnants and allows
a very clean detection2, as we show in Fig.1.3. Furthermore, color-singlet exchange between

dN

dy

y
XY

Figure 1.3: Distribution in rapidity of the products of a diffractive scattering.

protons is a very common event, about 25% of the cross section at the Tevatron3 is from
elastic scattering pp → pp and another 20% is due to single-diffractive or double-diffractive

2In practice, this is only useful in the case of the decay produces of the particles are easy to detect.
3From the Particle Data Group and [10].
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scattering. Then, this aspect of QCD is important and will be even more so at the LHC
because the center-of-momentum energy shall be equal to

√
s = 14 TeV. This energy will

increase the rate of elastic scattering to about 30% of the total cross section [11] and may
allow the production of heavy particles as the wanted Higgs bosons [12].

The surprise is that lowest-order QCD produces good estimates of diffractive processes
even if there are many problems left such as the prediction of the form factor for pions or
protons, the details in the infra-red region (IR) where we cannot apply perturbation theory,
the nature of the pomeron, the implications of Regge theory or the introduction of longitudinal
momentum transfer. This is the topic of the next section.

1.2 Unsolved problems in diffractive QCD

QCD has some problems to account for the details of diffraction. However, the relatively
good agreement between lowest-order diffractive calculations and data leads us to believe
that diffraction is an interesting challenge in the theory of strong processes, especially now
with the LHC, where we shall have all the known diffractive processes but also new ones.
Let us now look at three unsolved details in diffraction, the nature of the pomeron, the IR
divergence and the BFKL prediction for the cross sections.

The nature of the pomeron

From Regge theory, a two-body scattering in the high-energy limit is described in terms of
the exchange of Regge trajectories. Without going into to much detail, the amplitude is
proportional to a power of the square energy, s

A ∝ sα(t), (1.4)

where t is the momentum transfer and α(t) is the Regge trajectory. A Taylor expansion of
the trajectory in power series around t = 0 for t small enough gives

α(t) = α(0) + α′t, (1.5)

where α(0) is called the intercept and α′ the slope of the trajectory. The total cross section
behaves as a power of the intercept

σtot ∼ 1
s
Im(A(0)) ∼ sα(0)−1. (1.6)

As we have seen, diffractive production is based on the exchange of a trajectory with the
quantum numbers of the vacuum called a pomeron. This pomeron is the dominant trajectory
in elastic and diffractive high-energy processes and corresponds to the pomeron trajectory,
fitted on data by Donnachie and Landshoff in [13]

αIP (t) = 1.08 + 0.25t, (1.7)

and recently refitted to

αIP (t) = 1.09 + 0.3t, (1.8)

in [14]. Unfortunately, QCD is useless to predict the value of αIP (t). Besides, Regge poles
correspond to bound states, i.e. exchanged particle that lie on the Regge trajectory and in
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the case of the pomeron trajectory, such states called glueballs have not been observed yet4.

The difficulty with the pomeron and the QCD prediction of its trajectory is that even if
we know that the pomeron makes the cross section rise at high energy, its exact nature is
not well know. It could be a pole from the new Regge trajectory as we described previously
and made of glueballs but also a BFKL pomeron as we explain in the next subsection or
something else.

The IR region

Feynman rules for QCD define the usual gluon propagator in the Feynman gauge by

Dµν(k2) =
−iδabgµν

k2 + iε
, (1.9)

with k the four-momentum of the gluon and a, b the color indices. As we shall see in greater
detail later, this propagator becomes huge at small momentum and is divergent at k = 0.
Most of the time, we solve this problem via the introduction of an impact factor that removes
the divergence and makes the cross section finite in the IR region. This impact factor is usu-
ally fitted to data or simulated by a quark dipole qq̄.

One often supposes that the fact that the IR region is finite makes it small but it is not
obvious. However, if it is not the case, we need to approximate the contribution from the IR
region and to evaluate the uncertainties introduced.

The BFKL pomeron

Perturbative QCD calculations of the amplitude for high-energy processes are made through
pomeron exchange [3]. The amplitude is the result of the sum of the leading log(s) contribu-
tion from the exchange of an infinite number of gluons between a pair of quarks, the BFKL
pomeron. The summation procedure of all the log(s) contributions from each diagram is
given by the BFKL equation developed by Balitsky, Fadin, Kuraev and Lipatov at the end
of the seventies [16, 17].
The amplitude is the sum of the leading-log(s) contribution from gluon-exchange diagrams

A ∼ s
∑

n

α2
s(αs log(s))n, (1.10)

where (αs log(s))n is the leading log(s) contribution from the exchange of n+2 gluon between
the quarks in the singlet mode. After BFKL resummation, the total cross section behaves as

σ ∼ sω (1.11)

with ω the BFKL pomeron intercept in the leading order (LO)

ωLO ∼ 12
αs

π
log(2). (1.12)

The equation has the particularity to include all transverses momenta from soft contributions
to hard ones so that all the scales are mixed. The prediction of BFKL for a value of αs close
to 0.2 is too large and leads to a cross section behavior as ∼ s0.53, far away from the data.

4Glueball are expected to be the bound states of at least two gluons, there is now a 2++ candidate and the
reader can find more details about it in reference [15].
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Nevertheless, the BFKL approach may reproduce the data only if we include huge non-
leading corrections [18]. Another problem is that calculations are very sensitive to the details
of the IR region where we have to include non-perturbative corrections that complicate the
solution [6].

1.3 Diffractive production of the Higgs boson

A very interesting issue for diffractive physics is Higgs diffractive production. This idea was
developed 10 years ago and is now ready to be tested in the new Large Hadron Collider.
Actually, diffractive production is a potential Higgs discovery channel and lead to a lot of
theoretical5 and experimental studies.

Higgs diffractive production is the process pp → pHp and an example of a possible kinematics
is shown in Fig. 3.1. Most of the mechanisms of diffractive Higgs production are similar to

k

p p−∆

p’ p’−∆

q

l

X

Figure 1.4: An example of diagram related to the diffractive cross section for the production
of a Higgs boson in the high-energy limit.

this one inspired by the original paper of Bialas and Landshoff [20]. This mode of production
is interesting because from the LEP results [21], the mass of the Standard Model Higgs boson
is below 120 GeV. In this case, the largest decay branching ratio is

H0 → bb̄ (1.13)

and the detection of a bottom pair is quasi impossible if a lot of hadrons are present in the
detector. Hence, diffractive processes become very competitive because the momenta of the
two final protons may be measured very accurately and this leads to a very clear estimate
of the Higgs mass with missing mass technique [22]. Furthermore, the background6 is flat
and we can well separate it from the Higgs resonance peak. Another advantage will be the
huge energy available at the LHC that will increase the cross section of such a production.
First of all, the energy available will increase the elastic part of the cross section and then
increase the number of diffractive events. A lot of studies of the cross section for diffrac-
tive Higgs production have been made and lead to estimates that differ by several orders of
magnitude [8, 23]. In the table 1.1, we summarize the predicted cross section based upon
recent QCD calculations for diffractive production of a Higgs boson of mass about 120 Gev
at LHC energies, the last column gives the expected number of events for the first year of
running. If we think that 100 events are necessary to lead to the detection of the Higgs boson

5See [19] for a recent theoretical study.
6The background is composed of b and b̄ quarks that don’t come from Higgs decays.
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Reference Process σHiggs (fb) Number of events
First year

Cudell and Hernandez [8] quasielastic 300 9000
double diffractive 1200 36000

Durham group [24] quasielastic 3 90
double diffractive 40 1200

Enberg, Ingelman, Kissavos double diffractive 0.2 6
Timneanu [25]

Table 1.1: Recent QCD calculations of the cross section for quasielastic and double diffractive
production of a Higgs boson of mass about 120 GeV at the LHC energy, from [26]. The
number of events the first year of running is calculated for an integrated luminosity equal to
30 fb−1.

then it can be discovered the first year of running or in 16 years according to the last reference.

However, this production is not the topic of this work, that serves as an introduction to the
tools needed to calculate this process and then the reader should consider Higgs production
as the continuation of the present work.

1.4 Plan of this work

We now have the necessary ingredients to understand diffractive production. We defined
diffraction, its interest and the problems with diffractive QCD predictions. Our ultimate
goal is diffractive Higgs production and to build a model that can correspond to data. We
will present here our first steps in this direction.

The first chapter is an introduction to cutting rules. Diffractive cross sections in QCD cal-
culations are made from Feynman diagrams and we shall see that the main part of the
cross-section information is given by the imaginary part of the diagrams. Most of the time,
this imaginary part is easier to compute than the total amplitude hence, we shall develop
and remind the reader of techniques that relate the imaginary part to the total cross section.
Firstly, we shall speak about the use of diagrams, dispersion relations and how to use them
to find the total cross section of a scattering event. The second section introduces cutting
rules, a powerful tool in order to calculate directly the imaginary part of a diagram and goes
to the definition of Sudakov variables that we shall use in all this work. At the end of this
chapter, we shall make a complete calculation of a simple process in order to illustrate and
show the validity of all the tools introduced previously.

After the introduction of our technique of calculation we come to pomeron physics in the
next chapter. As we show in the introduction, the pomeron is a main but not well-know
ingredient in high-energy physics. Hence, we shall remind the reader of the definition of the
pomeron and of its importance in our calculation. We shall also introduce the approach of
our future calculations. Actually, the diffractive Higgs production diagrams can be separated
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in different pieces that we can complicate separately in order to improve the calculation and
to remove uncertainties. The last subsection is devoted to the first step in this direction, a
two-loop diagram as a basis of our future works.

The last chapter will contain a original result. We know that QCD has some problems es-
pecially with non-perturbative phenomena, i.e. long-distance events. The introduction of
non-perturbative effects in the calculation is very interesting because that leads to new ques-
tions in physics. A long time ago, Gribov introduced the idea of a modified gluon propagator
that includes non-perturbative effects in the usual calculation of the amplitude. Then, we
shall take this Gribov propagator and perform the calculation of two-gluon exchange with
it. We shall present the calculation itself and make a brief discussion on the results. We
conclude by a review of the improvements needed in the calculation and of the new aspects
of the amplitude.

This work is then the first step to diffractive exotic particles production. We hope that
it can be used as a kind of manual for diffractive calculations and a tool to more complex
calculations.



Chapter 2

Cutting rules
for Feynman diagrams

In particles physics, one of the experimental methods involves scattering of particles in accel-
erators. These collisions can be studied and lead to the most commonly calculated quantities
in quantum field theory, the scattering cross sections. The total cross section, σt, is propor-
tional to the probability of scattering to occur and comes from the probability of interaction
of particles. This is a quantity that theorists compute and experimentalists can measure.

In order to calculate the cross section, we have a lot of useful tools, the most important ones
being Feynman diagrams and more precisely the imaginary part of Feynman diagrams. In
the present chapter, we are going to introduce those tools and we shall show how they can be
used. Firstly, we briefly speak about diagrams, the optical theorem and dispersion relations,
secondly we introduce cutting rules as a powerful tool to calculate directly the imaginary
part of a Feynman diagram. The third section is a complete calculation of a simple process
in QCD.

2.1 Diagrams and dispersion relations

First, let us remind the reader of notions such as the cross section, Feynman diagrams and
the amplitude.

It is conventional to write the differential cross section for a 2 → 2 scattering process1 as

dσ

dΩ
=

1
64π2E2

cm

|M|2, (2.1)

where dΩ is the solid angle in the center-of-momentum frame in which the final particles
are produced [27]. The quantity M is dimensionless, Lorentz invariant and known as the
quantum-mechanical amplitude for the process to occur or the invariant amplitude. It is
analogous to the scattering amplitude f in quantum mechanics and we can see that the
physics resides in this amplitude. Most of the time, this amplitude can’t be calculated
exactly, even in very simple problems like QED processes but in order to evaluate it, we can
use Feynman diagrams. Each scattering process can be represented with lines and vertices
and translated directly into a contribution to M by associating multiplicative factors with
each elements of the diagram, this is the Feynman rules.

iM = Σ(all distinct and connected Feynman diagram for the process).
1As an example, the annihilation reaction e+e− → µ+µ−.
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Some of these rules [28] are given in Appendix B. Usually, this contribution is real and leads
to a real amplitude for the process but if there are poles in the propagators, the amplitude
has an imaginary part. Some Feynman diagrams have an imaginary part and let us discuss
the interest of this part.

The total amplitude for a process is the sum of the associated Feynman diagrams and these
diagrams lead to a purely real amplitude unless some denominators vanish and, in this case,
the diagrams have a non-zero imaginary part that contributes to the amplitude. Physically,
this happens when the virtual intermediate-state particles in the diagram go on-shell. We
show in Fig. 2.1 two examples of diagrams, the first has an intermediate state that can be on-
shell and leads to an imaginary part of the amplitude, the second is purely real. The amplitude

Figure 2.1: Example of diagrams, the first leads to an imaginary contribution to the ampli-
tude, the second is purely real.

for a process is the sum of all possible diagrams and hence, we have to calculate both the
imaginary part and the real part. However, we can make our work easier by considering at
the start, only the imaginary part of the amplitude. The advantages are that

1. for a given process, there are fewer diagrams leading to an imaginary contribution than
diagrams contributing to the real part;

2. these diagrams can be easily evaluated with the help of cutting rules as we explain in
the next section;

3. we can often obtain the real part of the amplitude via dispersion relation.

Because of this, we prefer computing the imaginary part of the amplitude and construct the
real part from it.

Let us now study the quantity M defined by the Feynman rules in perturbation theory.

2.1.1 Branch-cut singularity

The definition of M in the formalism allows us to consider it as a function of the energy
in the center-of-momentum frame, Ecm. First, we shall introduce some useful quantities,
the Mandelstam variables, after that, we shall speak about the analytic structure of M as a
function of the energy.

We define the Mandelstam variables and consider a system with two initial particles with
four-momenta p1 and p2 as shown in Fig. 2.2. This notation will be our usual notation for
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p1

p2

p3

p4

Figure 2.2: Label of the four external momenta.

incoming and outgoing particles and we have

s = (p1 + p2)2 = (p3 + p4)2, (2.2)
t = (p1 − p3)2 = (p2 − p4)2, (2.3)
u = (p1 − p4)2 = (p2 − p3)2. (2.4)

In these variables, s is the square of the energy in the center-of-momentum s = E2
cm and t

the square of the four-momentum transfer.

According to Feynman rules in perturbation theory, we can considerM as an analytic function
of the complex variable s and we define

√
s0 as the threshold energy for production of the

lightest multiparticle state. If the energy in the center-of-momentum frame is smaller than√
s0, the intermediate states cannot go on-shell, there are no poles on the real axis and no

contribution to the imaginary part of the amplitude: M(s) is real. Because of that, we have
the identity

M(s) = [M(s∗)]∗, (2.5)

each side of the equation is an analytic function of s, then M(s) can be analytically continued
to the entire complex s plane. Near the real axis, i.e. at s ± iε with s and ε real, eq. (2.5)
implies

M = ReM(s + iε) = ReM(s− iε). (2.6)

There is no discontinuity for s < s0 because there is no imaginary part. However, for s > s0,
there is enough energy to allow on-shell intermediate states which lead to branch cuts on the
real axis. The analytic function M(s) is such as

ReM(s + iε) = ReM(s− iε), (2.7)
ImM(s + iε) = −ImM(s− iε). (2.8)

The imaginary part becomes non zero and its sign changes when we cross the real axis, this
is the discontinuity across the real axis starting at the threshold energy s0. The discontinuity
across the cut, i.e. at the singularity, is

DiscM(s) = 2iImM(s + iε). (2.9)

This relation is easy to check for a one loop diagram and it is done in [27].
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Optical theorem for Feynman diagrams

Before closing this section, let us say a few words about the optical theorem in high-energy
physics. It can be used to related the imaginary part of M(s) to the total scattering cross
section, a measurable quantity.

The optical theorem is a straightforward consequence of the unitary of the S-matrix and it
says that the imaginary part of a forward scattering amplitude at t = 0 is proportional to
the total cross section. The standard form of the optical theorem in reference [27] is

ImM(p1, p2 → p1, p2)t=0 = 2Ecmpcmσtot(p1, p2 → anything), (2.10)

where Ecm is the total center-of-momentum energy and pcm is the momentum of either par-
ticle in the center-of-momentum frame. This arises from a sum of contributions from all
possible intermediate-state particles as we show graphically in Fig. 2.3. We have now a re-

2Im

p
1 p

1

p
2 p

2

= Σ dΠ
n

p
1

p
2

n
n( )

p
1

p
2

n( )

Figure 2.3: A graphical representation of the optical theorem with the sum of contributions
from all possible intermediate-state particles Πf .

lation between the amplitude that can be calculated from Feynman diagram and the total
cross section.

2.1.2 Dispersion relations

Dispersion relations2 allow the computation of the complete scattering amplitude from the
knowledge of its imaginary part. The method was inspired by the Kramers-Krönig relations
in optics for the index of refraction of a medium [29]. These relations express the real part
of the amplitude for forward scattering at a fixed squared energy s as an integral of the
imaginary part of the amplitude (absorptive part) over all square energy s′. The dispersion
relations come from the fact that the function M(s) is analytic and from the use of Cauchy’s
theorem3 to relate the imaginary and real part of M(s) on the real axis [30].

Let us consider the function M(s) analytic in the upper half s plane. For any point s inside
a closed contour C as we draw in Fig. 2.4 Cauchy’s theorem gives

M(s) =
1

2iπ

∮

C

M(s′)
s′ − s

ds′, (2.11)

with
∮

C

M(s′)
s′ − s

ds′ =
∫ ∞

−∞

M(s′)
s′ − s

ds′ +
∫

C∞

M(s′)
s′ − s

ds′ +
∫

Cε

M(s′)
s′ − s

ds′. (2.12)

2Dispersion relations are used and well known in optics where they are usually called Kramers-Krönig
relations.

3Theorem of integration along a closed curve given Appendix A.
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s’

C

Cε

s

Figure 2.4: Integration contour in the case of the dispersion relations.

Generally for high-energy processes the functionM(s′) vanishes sufficiently rapidly at infinity
so that there is no contribution to the integral from the half semicircle contour [31], hence

M(s) =
1

2iπ

[ ∫ ∞

−∞

M(s′)
s′ − s

ds′ +
∫

Cε

M(s′)
s′ − s

ds′
]
. (2.13)

If the pole s is now any point in the upper half plane and if we take the limit as the complex
energy approaches the real axis from above, we write s = s + iε with ε very small and

M(s + iε) =
1

2iπ

[ ∫ ∞

−∞

M(s′)
s′ − s− iε

ds′ +
∫

Cε

M(s′)
s′ − s− iε

ds′
]
. (2.14)

If ε →0,

M(s) = lim
ε→0

M(s + iε)

=
1

2iπ

[
P

∫ ∞

−∞

M(s′)
s′ − s

ds′ + iπM(s)
]
,

(2.15)

which leads to

M(s) =
i

π
P

∫ ∞

−∞

M(s′)
s′ − s

ds′. (2.16)

where P denotes the principal part of the integral. The real part and the imaginary part of
the last equation are

ReM(s) =
1
π

P
∫ ∞

−∞

ImM(s′)
s′ − s

ds′, (2.17)

ImM(s) = − 1
π

P
∫ ∞

−∞

ReM(s′)
s′ − s

ds′. (2.18)

The sign behind the two parts depends on the half s plane where the function is analytic. If
the contribution from the half semicircle C∞ doesn’t vanish, eq. (2.15) becomes

M(s) =
i

π
P

∫ ∞

−∞

M(s′)
s′ − s− iε

ds′ + C∞. (2.19)

This term may be suppressed by making a subtraction, this means considering the amplitude
M(s)/s instead of M(s): it has an extra-pole in s = 0 but a better behavior at infinity. For
instance, if the amplitude is constant at s →∞ the dispersion relations are given by

ReM(s)
s

=
ReM(0)

s
+

1
π

P
∫ ∞

−∞

ImM(s′)
s′(s′ − s)

ds′, (2.20)



2.2 Cutting rules 19

which is called a dispersion relation with one subtraction.

Then, we have expressed the real part of a forward-scattering amplitude M in terms of a
dispersion relations over its imaginary part.

2.2 Cutting rules

In the present section, we will introduce a powerful tool to compute directly the imaginary
part of a Feynman diagram: the Cutkosky rules or cutting rules proven by Cutkosky in
1960 [32]. Discontinuities of a diagram give precisely twice the imaginary part that we need
to obtain the total cross section with the help of the optical theorem. Cutkosky showed
that the physical discontinuity of any multiloop Feynman diagram is given by a set of simple
rules4, the cutting rules.

In the region of momentum integration for a given Feynman diagram, every time that one or
more propagators can simultaneously go on-shell, the value of the discontinuity is given by
the substitution of each of the two propagators with a delta function

1
p2

i −m2 + iε
→ −2iπδ+(p2

i −m2). (2.21)

Note the δ+

δ+(p2
i −m2) = δ(p2

i −m2)θ(p0
i ), (2.22)

because each cut corresponds to a particle so that energy must be positive and there are
some constraints on the integration. Poles of the additional propagators do not contribute
and we show an example of a cut diagram in Fig. 2.5. So, to compute the discontinuity of a

2Im = dΠ

2

Figure 2.5: An example of a cut diagram and the contribution to the imaginary part of the
amplitude.

Feynman diagram, we use the following method:

1. Cut through the diagram in all possible ways such that the cut propagators can simul-
taneously be put on-shell.

2. For each cut, replace the propagators using eq. (2.21), then perform the loop integrals.

3. Sum the contribution of all possible cuts.

From the discontinuity, we can find the imaginary part of the amplitude via eq. (2.9).

Now, we better understand the structure of our next calculations and the interest of the
imaginary part of the amplitude. Our method shall be: compute the imaginary part of some
Feynman diagrams by cutting rules and use dispersion relations to find the real part. The
imaginary part can be used too in order to obtain the total cross section of processes from the

4These rules are simple only for singularities in the physical region.
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optical theorem. Thus far, we gave the method of cutting. Usually, it is easier to compute
the discontinuity of a diagram with the help of cutting rules than to calculate the imaginary
part directly and we shall often use this powerful tool.

2.3 Sudakov variables

Now, as we have introduced our tools for the amplitude calculations, we present our variables.
During the rest of this work, we will use some useful variables called Sudakov variables of a
given four-vector.

Physical approach

Let us first consider an intuitive approach. The Sudakov representation is a decomposition
of the intermediate state four-momenta q upon the incoming particles four-momenta, p1 and
p2. So, we have three privileged directions, the directions of the ingoing particles plus the
transverse direction. With this particular decomposition,

q = αp1 + βp2 + q⊥, (2.23)

we can immediately see that α is the part of the four-momentum in the p1 direction, β the
part in the p2 direction and q⊥ the part of the momenta in the perpendicular direction. A
small β indicates that the intermediate particles are more in the direction of the ingoing
particles p1 than in the p2 direction. In addition to these advantages, we have the covariance
of q, i.e. a Lorentz transform changes the four-vectors p1 and p2 simply and keeps α and β
unchanged. We have two invariants that lead to the physical interpretation of the variables
and this will give us a good intuition for what happens during a scattering process.

2.3.1 Mathematical approach

From the mathematical point of view, let us consider a system with two initial particles with
four-momenta p1 and p2 as shown in Fig. 2.6. We work with non-vanishing masses M for the

p1

p2

p3

p4

Figure 2.6: Label of the four external momenta.

initial particles,

p1.p1 = M2, (2.24)
p2.p2 = M2, (2.25)

and use Mandelstam variables. It is immediate from the definition in eq. (2.3) that
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s = p2
1 + p2

2 + 2p1.p2,

= 2M2 + 2p1.p2 → p1.p2 =
s− 2M2

2
.

(2.26)

In the high-energy limit, s ≫ M2 then

p1.p2 ∼ s

2
. (2.27)

This is the relation that we will use in the rest of this work. We now come back to eq. (2.23).
The transverse momentum q⊥ is a transverse vector, i.e.

q⊥.p1 = 0,

q⊥.p2 = 0.
(2.28)

Hence we have the change of variable

(q0, qx, qy, qz) → (α, β, ~q⊥), (2.29)

where ~q⊥ has two degrees of freedom. We have to calculate the associated jacobian. In the
center-of-momentum frame, it is possible to choose the z-axis such that

p1 = (
√

s

2
, 0, 0,

√
s

2
), (2.30)

p2 = (
√

s

2
, 0, 0,−

√
s

2
). (2.31)

This means that the ingoing particles move along the z-axis coming from opposite directions5.
We can write the matrix of the change of variables for the first and fourth variables,

(
q0

q3

)
=

(√
s

2

√
s

2√
s

2 −
√

s
2

)(
α
β

)
, (2.32)

and q⊥ is a combination of transverse vectors. The jacobian is the absolute value of the
determinant:

∣∣∣∣∣

√
s

2

√
s

2√
s

2 −
√

s
2

∣∣∣∣∣ = | −
√

s

2

√
s

2
−
√

s

2

√
s

2
| = s

2
. (2.33)

Then, all integrations over the four-momenta q can be written in terms of the Sudakov
variables,

∫
d4q

(2π)4
→ s

2(2π)2

∫
d2q⊥
(2π)2

dαdβ. (2.34)



2.3 Sudakov variables 22

p.p=m²

p.p=0

p.p=m²

Future

Past

Present

p.p=0

Elsewhere

Physical region

Forbidden

E

p

Figure 2.7: Light-cone in energy-momentum space.

Light-cone variables

Another property of Sudakov variables is that they are easily translated into variables on
the light-cone for which there are some useful simplifications in calculations for high-energy
scattering because of the presence of ultra-relativistic particles and of a preferred axis [33].

Firstly, let us remind the reader of the meaning of the light-cone. In the light-cone picture of
Fig. 2.7, the envelope of the cone is the line p.p = 0, it is the trajectory of a massless particle
in the energy-momentum diagram. Massive particles move on a hyperboloid inside the cone
defined by p.p = M2. In the high-energy limit i.e. for s large, the hyperboloid tends towards
the light-cone. Usual light-cone coordinates are:

pµ = (p+, p−, p⊥), (2.35)

where6

p+ =
p0 + p3√

2
, p− =

p0 − p3√
2

, p⊥ = (p1, p2). (2.36)

Note that these coordinates depend on the choice of the z-axis. The Lorentz invariant scalar
product has the form

p.p = 2p+p− − ~p⊥2 = M2, (2.37)

with the on-shell conditions, p+ > 0 and p− > 0. We loose the explicit dependence upon the
square of the four-momentum, the only square quantity is ~p⊥2 and we have a linear expression
in p+ or p− in the denominators of the propagator.

Let us now take a look at the Sudakov variables. Because we want to use these variables in
scattering processes, we define the z-axis as the natural direction of the collision as shown
in Fig. 2.8. The four-momenta of the incoming particles are the same as in eq. (2.30) and
eq. (2.31) and because of q = αp1 + βp2 + ~q⊥ this means that

5See the next section for a more detailed study of this choice.
6Note that some authors omit the

√
2 .
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p1=(E,pz) p2=(E,−pz)

p 4
=(E,−p)

p 3
=(E,−p)

Figure 2.8: Usual kinematics in high-energy scattering processes.

q+ = q0 + q3 = (α
√

s

2
+ β

√
s

2
) + (α

√
s

2
+ β

−√s

2
) = α

√
s, (2.38)

q− = q0 − q3 = (α
√

s

2
+ β

√
s

2
)− (α

√
s

2
+ β

−√s

2
) = β

√
s. (2.39)

We immediately recognize the light-cone variables structure and their useful properties.

2.4 A complete calculation of a one-loop diagram

We will now perform a complete calculation of the diagram of Fig. 2.9 in order to illustrate
the cutting rules. To make it easier, we begin in λφ3 theory7 where all particles are scalar, the

−p+q

p+q

−iλ
2p 2p

Figure 2.9: A one loop diagram in λφ3 theory.

coupling is λ and there is no trace in the numerator8. Firstly, we do the complete calculation
with Sudakov variables. Secondly, we apply cutting rules to obtain the imaginary part of the
diagram. We compare the results in the conclusion.

2.4.1 Complete calculation

We begin by computing the imaginary part of the diagram of Fig. 2.9 with no help from
cutting rules.

The incoming and outgoing particles are massive and we suppose the quarks massless. We
call 2p the four-momentum of the incoming particle, q the four-momentum in the loop, p1

and p2 are the light-cone vectors that we need for our Sudakov decomposition. The special
Sudakov parametrization for q and p is,

7λφ3 theory is super-renormalizable in four dimensions then we do not have to worry about UV renormal-
ization.

8We remind the reader of Feynman rules for λφ3 and for other theories in Appendix B.
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q = αp1 + β̃p2 + q⊥ (2.40)

p = p1 +
b

s
p2, (2.41)

and we should not forget the jacobian at the end of the calculation9. The particular choice
for the coefficient of p2 in the p parametrization means that the incoming particle is es-
sentially in the p1 direction (on the light-cone) plus a small component in the p2 direction.
Mathematically and in a general way, if M is the mass of a particle,

p = (E,~0,
√

E2 −M2) ∼ (E, 0, E) +O(
1
E

),

→ p = p1 +
b

s
p2,

(2.42)

in the high-energy limit. This allows us to write the four-momentum p equal to p1 plus a
small correction in order of 1/s because of the mass of the incoming particles. In this case
and in the limit of high energy, we have the relations

p1.p1 = 0, p2.p2 = 0, p1.p2 =
s

2
. (2.43)

as we explained in section 2.3. The momentum p is such as 4p2 = M2, then

4p2 = M2 = b → b =
M2

4
. (2.44)

In the rest of the calculation we will use

M2

4s
=

µ

s
= µ̃. (2.45)

The diagram contains two four-momenta that can be written:

p + q = (α + 1)p1 + (β̃ + µ̃)p2 + q⊥ (2.46)
−p + q = (α− 1)p1 + (β̃ − µ̃)p2 + q⊥, (2.47)

and the corresponding inverse propagators are

(p + q)2 + iε = (α + 1)(β̃ + µ̃)s + q2
⊥ + iε, (2.48)

(−p + q)2 + iη = (α− 1)(β̃ − µ̃)s + q2
⊥ + iη. (2.49)

The amplitude in Sudakov variables is:

iM =
∫

d4q

(2π)4
i2(−iλ)2

[(p + q)2 + iε][(−p + q)2 + iη]

=
λ2

8π2

∫
d2q⊥
(2π)2

∫
dαdβ̃

[(α + 1)(β̃ + µ̃)s + q2
⊥ + iε][(α− 1)(β̃ − µ̃)s + q2

⊥ + iη]
.

(2.50)

9The β̃ notation seems not useful but it will be justified by the following.
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Poles in α

The first step is a study of the poles in the denominator. The quark propagators have poles
at

α1 =
−q2

⊥ − iε

s(β̃ + µ̃)
− 1 (2.51)

α2 =
−q2

⊥ − iη

s(β̃ − µ̃)
+ 1. (2.52)

The positions of the poles in function of the value of β in the α integral are shown in
Fig. 2.10. We perform the integral by residue and constrain β̃ to lie between −µ̃ and µ̃: for

α1
α1

α1

α2

α2 α2

α α α

β>µ µ>β>−µ β<−µ

Figure 2.10: Position of the poles in the α integral in function of β.

other values of β̃, we can close the contour without enclosing any poles and the integral is
zero. Consequently, we can consider β̃ small and of order 1/s. We recall

β̃ =
β

s
. (2.53)

The new poles in α are

α1 =
−q2

⊥ − iε

(β + µ)
− 1, (2.54)

α2 =
−q2

⊥ − iη

(β − µ)
+ 1. (2.55)

We have to be careful with these poles because we can have some problem if µ = 0, β = µ
and β = −µ, the two last cases have poles at infinity. Then, we study the amplitude in these
particulars cases:
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• [β = µ]: the integrand in eq. (2.50) has one pole at αβ=µ = −q2
⊥−2µ−iε

µ .
The amplitude is equal to zero because we can close the integration contour upward

α

αβ=µ

=0

and the pole will not contribute.

• [β = −µ]: the integrand in eq. (2.50) has one pole at αβ=−µ = q2
⊥+2µ+iε

µ .
We can close the integration contour downward, giving zero.

α
αβ=−µ

=0

• [µ = 0]: the interval [-µ, µ] has zero measure and hence, at the threshold energy
(s = M/4=0) there are no poles contributing to the amplitude.

We can conclude that the value β = µ and β = −µ don’t contribute to the amplitude.

Let us now come back to the calculation, the amplitude (2.50) becomes

M = − λ2

8π2

∫
d2q⊥
(2π)2

∫ µ

−µ
dβ

∮

C
f(α)dα, (2.56)

with

f(α) =
1

[(α + 1)(β̃ + µ̃) + q2
⊥ + iε][(α− 1)(β̃ − µ̃) + q2

⊥ + iε]
. (2.57)

The integral over α is solved by Cauchy’s theorem which we remind the reader of in Ap-
pendix A and we have

∮

C
f(α)dα = −2iπRes[α=α1]f(α) +

∫

C∞
f(α)dα. (2.58)

C∞ is the half semicircle drawn in the center of Fig. 2.10 but this integral vanishes10 because
the integrand decreases faster than 1/α. By definition, the residue in α1 is

Res[α=α1] = lim
α→α1

(α− α1)f(α) (2.59)

Therefore, the contribution of the pole α1 yields the integral,

M =
iλ2

4π

∫
d2q⊥
(2π)2

∫ µ

−µ
dβ

1
2[q2

⊥µ− (β2 − µ2 + iε)]
. (2.60)

10In the intuitive way but we can easily prove it via the estimation lemma written in Appendix A.
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Poles in β

Now, we have to study the new integrand

M =
iλ2

8π

∫
d2q⊥
(2π)2

∫ µ

−µ
dβ

1
[β2 − β2

0 ]
. (2.61)

It has poles at

β0 = ±
√

µ2 + q2
⊥µ,

= ±β0.
(2.62)

We can associate each pole at each of the two pieces for the total amplitude drawn in Fig. 2.11.
The parameters β is positive in [0,µ] for the first diagram and negative in [−µ,0] for the second,

iM= +

Figure 2.11: Total amplitude of the studied process.

the total amplitude is thus twice the amplitude of one of them. We now check the conditions
for these poles to be in the domain of the β integration i.e. if µ2 > β2

0 > 0.

1. µ2 + q2
⊥µ < µ2

q2
⊥ < 0.

(2.63)

2. µ2 + q2
⊥µ > 0

q2
⊥ > −µ.

(2.64)

Hence, if q2
⊥ ∈ [−µ, 0] there are poles in the domain of integration that contribute to the

imaginary part of the amplitude.

First, we focus our attention on the imaginary part and because of the poles

Im(M) =
iλ2

8π

∫
d2q⊥
(2π)2

[
(−iπ)[Res[β=β0] −Res[β=−β0]]f(β)

]
, (2.65)

with

f(β) =
1

[β − β0][β + β0]
(2.66)

along the integration contour shown in Fig. 2.12. We have

Res[β=β0] =
1

2
√

µ2 + q2
⊥µ

, (2.67)

Res[β=−β0] =
−1

2
√

µ2 + q2
⊥µ

. (2.68)

And then, the imaginary part of the amplitude is
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−µ µ

β

−β0

β0

Figure 2.12: Positions of the pole in the β integral.

Im(M) =
λ2

4

∫
d2q⊥
(2π)2

1√
µ2 + q2

⊥µ
, (2.69)

remember that q2
⊥ is a negative quantity and the last integral over d2q⊥ is not divergent.

Im(M) =
λ2

4

∫
dq2
⊥dφ

2(2π)2
1√

µ2 − q2
⊥µ

=
λ2

4
π

∫ µ

0

dq2
⊥

(2π)2
1√

µ2 − q2
⊥µ

=
λ2

4
π

2
√

µ2 − q2
⊥µ

−µ

∣∣∣∣∣
µ

0

=
λ2

8π
.

(2.70)

Real part

The real part of the amplitude is calculated in two steps, the first is the principal part of
eq. (2.60) corresponding to q2

⊥ ∈[−µ,0], i.e. an integral along the real axis where we just
remove the poles contribution calculated before. The second is an ordinary integral on β

−µ µ

β

−β0

−ε −εε ε

β0

Figure 2.13: Principal part of the integral, we remove the pole contribution and take the
limit ε → 0.

corresponding to q2
⊥ ∈ [−s,−µ].
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Let us begin with the principal part, by definition we have

P
∫ ∞

−∞

f(x)
x− x0

dx = lim
ε→0

[ ∫ x0−ε

−∞
+

∫ ∞

x0+ε

]
f(x)

x− x0
dx, (2.71)

where x0 are the pole of the function f(x). In our case, we have to compute

P
∫ µ

−µ

dβ

[β2 − β2
0 ]

, (2.72)

with β2
0 = µ2 + q2

⊥µ a positive quantity. After some transformations, we have to compute

P
∫ µ

−µ

dβ

[β2 − β2
0 ]

= P
∫ µ

−µ

dβ

(β − β0)(β + β0)

= P
∫ µ

−µ

dβ

2β0

[
1

(β − β0)
− 1

(β + β0)

]

= P
∫ µ

−µ

dβ

2β0

[
1

(β − β0)
− −1

(β − β0)

]

=
1
β0

P
∫ µ

−µ

dβ

(β − β0)
.

(2.73)

The principal part is

P
∫ µ

−µ

dβ

(β − β0)
= lim

ε→0

[ ∫ −β0−ε

−µ
+

∫ µ

β0+ε

]
dβ

β − β0
= ln

(
µ− β0

µ + β0

)
. (2.74)

The first branch of the real part is thus

2π√
µ2 + q2

⊥µ

∫ 0

−µ

d2q⊥
(2π)2

ln
(µ−

√
µ2 + q2

⊥µ

µ +
√

µ2 + q2
⊥µ

)
. (2.75)

The second branch with q2
⊥ ∈ [−∞,−µ] can be integrated directly because there is no pole

in the denominator,
∫ µ

−µ

dβ

β2 + |β2
0 |

=
∫ µ

−µ

1
|β2

0 |
dβ

β2

|β2
0 |

+ 1
, (2.76)

with |β2
0 | = −µ2 − q2

⊥µ then we have

∫ µ

−µ

dβ

β2 + |β2
0 |

=
1
|β0|tan−1(

β

β0
)
∣∣∣∣
µ

−µ

=
1
|β0|tan−1(

µ

β0
)− tan−1(

−µ

β0
)

=
2√

µ2 + q2
⊥µ

tan−1

(
µ√

µ2 + q2
⊥µ

)
.

(2.77)

and the second branch is
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4π√
µ2 + q2

⊥µ

∫ −µ

−∞

d2q⊥
(2π)2

tan−1

(
µ√

µ2 + q2
⊥µ

)
. (2.78)

We now have the real part of the amplitude,

Re(M) =
2π√

µ2 + q2
⊥µ

[ ∫ 0

−µ

d2q⊥
(2π)2

ln
(µ−

√
µ2 + q2

⊥µ

µ +
√

µ2 + q2
⊥µ

)

+ 2
∫ −µ

−s

d2q⊥
(2π)2

tan−1

(
µ√

µ2 + q2
⊥µ

)]
.

(2.79)

2.4.2 Cutting rules calculation

We now apply cutting rules and compute directly the imaginary part of the amplitude via
the discontinuity of the diagram 2.9. We use the Sudakov parametrization and because of
our previous study, we know that β is of order 1/s and we directly use it in

q = αp1 +
β

s
p2 + q⊥. (2.80)

We cut through the diagram in all possible ways, in this case there is only one possible cut
as we show in Fig. 2.14, and put on-shell the cut propagators,

p+q

−p+q

Figure 2.14: Cut in the studying diagram.

(α + 1)(β + µ) + q2
⊥ = 0, (2.81)

(α− 1)(β − µ) + q2
⊥ = 0. (2.82)

For each cut, we replace the propagator by a δ-function and perform the loop integral. In
practice, this means to solve this system of equation for α and β and to replace them in the
expression of the amplitude,

iM =
λ2

8π2

∫
d2q⊥
(2π)2

∫
dβdα

[(α + 1)(β̃ + µ̃) + q2
⊥ + iε][(α− 1)(β̃ − µ̃) + q2

⊥ + iη]
. (2.83)

Before applying the cutting rules, we check the condition of application: energy in the loop
must be positive. We use two methods, the first is to argue that if energy is positive, the
components of the corresponding four-momenta are positive and thus
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α + 1 > 0,

β + µ > 0,
(2.84)

for the (p + q) four-momentum. The (−p + q) four-momentum corresponds to an antiquark
hence the conditions become

α− 1 < 0,

β − µ < 0.
(2.85)

This constrains α and β to lie between

−1 < α < 1, (2.86)
−µ < β < µ. (2.87)

We can also calculate a quantity proportional to the energy,

(p + q).p = (α + 1)µ
s

2
+ (

β + µ

s
)
s

2
, (2.88)

(−p + q).p = (α− 1)µ
s

2
+ (

β − µ

s
)
s

2
, (2.89)

and impose it to be positive (negative for the antiquark) in the large s limit. The conditions
are identical and we draw the physical region for the parameters in Fig. 2.15. As for q2

⊥,

β

α
1−1

µ

−µ

Figure 2.15: Physical region for the α and β parameters.

the kinematics constrains it to be smaller than something of order s because we cannot have
more energy in the loop than in the incoming particles.

We now calculate the α integral via the first cut,

DiscM =
λ2

8π2

∫
d2q⊥
(2π)2

∫
dβ

∫
dα

[(α− 1)(β − µ) + q2
⊥]
× (−2π)δ(α− α0), (2.90)

with α0 the solution of eq. (2.81):

α0 =
−q2

⊥
(β + µ)

− 1. (2.91)
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We put α = α0 in the second equation (2.82) and solve it,

[ −q2
⊥

β + µ
− 2

]
(β − µ) + q2

⊥ = 0,

−q2
⊥(β − µ)− 2(β2 − µ2) +−q2

⊥(β + µ) = 0,

q2
⊥µ− (β2 − µ2) = 0,

(2.92)

that leads to

β = ±
√

µ2 + q2
⊥µ. (2.93)

The pole β must be real and this constrains q2
⊥ to lie between −µ and 0. One of the poles

corresponds to the diagram that we study and the other one is the second cut of the diagram
with arrows in the opposite direction as we explained in Section 2.4.1. The total amplitude
is obviously the sum of both terms. Noting β0 =

√
µ2 + q2

⊥µ,

DiscM =
λ2

8π

∫
d2q⊥
(2π)2

∫
dβ

[−2πδ(β − β0)
[β − β0]

+
2πδ(β + β0)

[β + β0]

]
,

=
λ2

2

∫
d2q⊥
(2π)2

[
1

2
√

µ2 + q2
⊥µ

+
1

2
√

µ2 + q2
⊥µ

]

=
λ2

2

∫
d2q⊥
(2π)2

1√
µ2 + q2

⊥µ
.

(2.94)

for β > 0. The imaginary part of the amplitude is half the discontinuity of the diagram then

ImM =
λ2

4

∫
d2q⊥
(2π)2

1√
µ2 + q2

⊥µ
, (2.95)

with q2
⊥ a negative quantity.

We immediately see that the imaginary part computed by cutting rules in eq. (2.95) is
exactly the same as the one computed completely in eq. (2.69).

2.4.3 The REDUCE version

This kind of calculation is easy to perform on the back of an envelope, this is a one-loop
diagram. We want to use it as a foundation to more complicated diagrams with additional
loops, intermediate states and other subtleties so that we write a small REDUCE program
in order to help us in the calculation.

This program is very simple but can be used for more complex case that maybe need more
than an envelope. The structure is always the same:

1. A common part with the definition of variables, vectors and the trace in the numerator.

2. The complete calculation of the amplitude with poles, residues and integration.

3. The amplitude calculation by cutting rules.

We write the program corresponding to the previous calculation with some comments in
Appendix C.1. Others programs used in this work can be found in the appendix too.
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2.5 Conclusion

Now, we have a better understanding of why the imaginary part is the basis of the problem
in amplitude calculation, this part leads to the total amplitude and measurable quantities
such as the total cross section through known relations. We have seen that cutting rules are
a powerful tool in the calculation of the imaginary part of Feynman diagrams. Using them
allows us to simplify calculations. In the following, we sometimes check results obtained by
cutting rules by performing the complete calculation as a good exercise to understand the
inside well of the calculus.



Chapter 3

Diffractive pomeron physics

This work introduces the basic tools for the calculation of the diffractive cross section for the
production of a Higgs boson or another exotic particles. An example of a possible diagram is
the one shown in Fig. 3.1. This diagram contains at least three loops and the two quark-loops

k

p p−∆

p’ p’−∆

q

l

X

Figure 3.1: An example of diagram related to the diffractive cross section for the production
of a Higgs boson in the high-energy limit.

are interpreted as the impact factor of the colliding proton or of other incoming hadrons. This
is a complex problem so that we begin by a simpler case in order to understand the logics of
this kind of calculation.

In this chapter, we start with a brief introduction of pomeron physics, the main ingredient
in our calculation. We define the pomeron and explain where it dominates the amplitude.
We then develop a method of calculation, introduce some simplification as k⊥ factorization
and we interpret the pieces of the answer as physical objects. The last section is devoted to
a simple diffractive calculation. We conclude by the outlook and the possible improvements.

3.1 An introduction to the pomeron

It was observed experimentally that the total cross section rises slowly as s increases. This
rise can be explained by the exchange of a single Regge pole from a new trajectory called the
Pomeron from its inventor Pomeranchuk [34]. In order to study scattering processes at the
LHC, we have to know more about gluon exchanges which produce this pomeron.

The pomeron is whatever is exchanged between hadrons to make the approximately constant
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total cross section that is observed at high energy [35]. It is an exchange of a color singlet1

with vacuum quantum numbers that can be modeled most simply by the exchange of two
(non)perturbative gluons2 between a pair of quark and we show the simplest contribution
in Fig. 3.2. The pomeron constitutes an excellent phenomenological description of hadronic

Figure 3.2: Simplest contribution to a pomeron exchange between quarks.

total cross sections, especially at high energy because at 1800 GeV more than 99% of the
total cross section is due to pomeron exchange [8]. Another advantage is that high-energy
hadronic diffractive processes that include pomeron exchanges usually lead to large rapidity
gaps which is a beautiful tool of detection as we explain in the first chapter. Then, the
pomeron seems to be an essential element in high-energy diffraction processes but there is
still a need for a more fundamental understanding of its exact nature.

The pomeron is needed because we work at high energy where its trajectory dominates
but also because it can lead to Higgs production. Actually, most of the models for Higgs,
or exotic particles production in a rapidity gap are extension of the original paper by Bialas
and Landshoff [20] where the Higgs is produced via a top quark loop and a minimum of
two-gluon exchange, as in Fig 3.1. Hence, this lowest-order diagram is a good beginning in
our understanding of diffractive Higgs production.

3.2 Calculation organization

In order to develop and test a method for loop calculations, we first define variables, tools
and prepare a REDUCE program capable of doing the calculation. We start with a simplified
case where the incoming particles are scalar mesons and two essentially transverse gluons,
allowed by k⊥ factorization. In this section, we will justify this factorization and develop the
method of calculation. We finish by explaining what will be the steps needed in order to
change this calculation into an amplitude for Higgs-boson diffractive production.

3.2.1 k⊥ factorization

k⊥ factorization can be illustrated by the calculation of a simple two-gluon exchange. We
will perform the beginning of the calculation and show that gluons are basically transverse
in the large-s limit with their other components α and β being of order 1/s.

The leading order of two-gluon singlet exchange contains the two simple diagrams drawn
in Fig. 3.3, the first is called the direct diagram and the second the crossed diagram. We
suppose the intermediate quarks and the incoming particles massless with p2

1 = p2
2 = 0 and

the momentum transfer ∆ null, i.e. the four-momenta of the incoming and outgoing quarks
are the same3. In terms of Sudakov variables,

1There is no color transferred between the incoming and outgoing quarks.
2A detailed approach has to make the difference between soft and hard pomerons. The reader can find a

discussion about this topic in most of the references and especially in [36].
3This cannot be the case in Higgs diffractive production but we just want to have an idea of the parameters

in the calculation.
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p1p1
p1+k

p2

k

p2−k

p1
p1+kp1

p2p2+kp2
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ν

ν

µ

µ

Figure 3.3: Lowest-order Feynman diagrams of a two-gluon exchange.

k = αkp1 + βkp2 + k⊥, (3.1)

with the jacobian of this change of variable equal to s/2. We have the relations

p1.k⊥ = 0, (3.2)
p2.k⊥ = 0, (3.3)
p1.p2 = s/2, (3.4)

in the large-s limit. We write the amplitudes where gs is the coupling constant for the
quark/gluon vertices,

iM = (−igs)4C
∫

dk2
⊥

(2π)4
Tr[p1/ γν(p1/ + k/)γµ]Tr[p2/ γµ(p2/− k/)γν ]

[(p1 + k)2 −m2
q + iε][(p2 − k)2 −m2

q + iη][k2 + iσ]2
, (3.5)

iMc = (−igs)4C
∫

dk2
⊥

(2π)4
Tr[p1/ γν(p1/ + k/)γµ]Tr[p2/ γµ(p2/ + k/)γν ]

[(p1 + k)2 −m2
q + iε][(p2 + k)2 −m2

q + iηc][k2 + iσ]2
, (3.6)

where we denote with a c index the element related to the crossed diagram, C=2/9 is the
color factor where the 9 comes from the average over the color. We integrate eq. (3.5) by
residue4 and then we study the denominator. It has poles in β at

(p1 + k)2 + iε = (α + 1)βs + k2
⊥ + iε = 0

→ β1 =
−k2

⊥ − iε

(α + 1)s
,

(3.7)

(p2 − k)2 + iη = (1− β)αs− k2
⊥ + iη = 0

→ β2 =
k2
⊥ − iη

αs
− 1,

(3.8)

(p2 + k)2 −m2 + iηc = (1 + β)αs + k2
⊥ + iηc = 0

→ β2c =
−k2

⊥ − iηc

αs
− 1,

(3.9)

k2 + iσ = αβs + k2
⊥ + iσ = 0

→ β3 =
−k2

⊥ − iσ

αs
.

(3.10)

Now, we study the position of the poles in function of the value of α in Fig 3.4. We can see
4We can solve the integral by cutting rules because the two intermediate quarks can simultaneously go

on-shell. In this case, because the poles are simple and in order to understand well the parameters, we will
perform the complete calculation.
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+iε

+iη

+iηc

+iσ

+iε

−iη

−iηc

−iσ −iσ

−iε

−iη

−iηc

+ =0=0+

α−1 0

Figure 3.4: Position of the poles in the complex α plane in the function of the value of α.

that the physical region for α is between -1 and 0 where only the pole β1 contributes and
we can conclude that because of these only possible values for α, eq. (3.7) gives us a pole of
order 1/s. For other values of α, all the poles are on the same side of the real axis and we
can closed the integration contour without including any pole so that the contribution to the
amplitude is equal to zero. The change of variable gives us

∫
d4k⊥
(2π)4

→ s

2(2π)2

∫
dαdβdk2

⊥
(2π)2

, (3.11)

and the α-integral Iα becomes

Iα =
∫ 0

−1
Resβ1 [f(α, β, k2

⊥)]dα, (3.12)

where Resβ1 is the residue in β1 of the function f(α, β, k2
⊥). We consider that α is small and

remove the terms that contains α2 then the new integrand has one pole at

α =
k2
⊥
s

. (3.13)

This pole is of order 1/s and lies in the domain of integration if

−s < k2
⊥ < 0. (3.14)

This constrains |k2
⊥| below s with k2

⊥ < 0. We can integrate directly over α by residue in
order to obtain the contribution of the pole to the imaginary part of the amplitude. The
cross diagram is calculated in the same way and the complete result in the large-s limit is

M = ig4
ssC

∫
d2k⊥
(2π)2

1
k4
⊥

. (3.15)

This answer is in agreement with the Cheng and Wu result [37] and reference [3]. It is a
purely imaginary contribution coming from the exact cancelation of the real part of the two
lowest-order leading diagrams. We can directly impose the order 1/s of the pole on α and β
parameters in our parametrization of k,

k =
αk

s
p1 +

βk

s
p2 + k⊥ ≈ k⊥. (3.16)

This is the basis of k⊥ factorization and this physically means that the two gluons exchanged
are principally transverse with only a small component in the p1 and p2 directions. It is
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a useful property because it really simplifies the calculation in high-energy limit where 1/s
terms can be ignored.

3.2.2 Intermediate quarks

The decomposition of the intermediate quark four-momentum in its Sudakov variables is mo-
tivated by the following physical argument.

We consider a collision where two scalar mesons come from opposite directions p1 and p2.
The mesons contain two quarks and we suppose that these quarks remain more or less in the
same direction as the initial particles. Actually this is justified by the fact that the meson
moves faster in the z direction taking with it the quarks so that the dominant quark velocity
direction is the direction of the meson [2]. This can be seen in Fig. 3.5. Hence, we can write

q

kt

p1

p2

Figure 3.5: p1 and p2 direction and the q four-momentum parametrization interpretation.

the four-momentum q as

q = αqp1 +
βq

s
p2 + q⊥, (3.17)

in the upper-quark loop of the diagram and

l =
αl

s
p1 + βlp2 + l⊥, (3.18)

in the lower loop. This is the parametrization that we shall use in the rest of this work.

3.2.3 Method and physical interpretation

Now, we define the structure of the next calculation and the way we want to organize the
answer in order to have a physical interpretation of the process.

We first consider a very simple case where we replace the proton by a scalar with no structure
i.e. the transition vertex scalar/quark is simply a constant. In order to compute a physical
amplitude and respect the gauge invariance of QCD, we have to consider all possible diagrams:
this means compute the six diagram in Fig. 3.6. These are two-loop diagrams and we use
k⊥ factorization and the parameterizations explained previously. We shall write the amplitude
in a factorized form:

∫
d2k⊥ f(k⊥)×F(k⊥). (3.19)
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Figure 3.6: The six diagrams that contribute to the amplitude.

The F function is the impact factor of the incoming particle and f is the usual amplitude
of two-gluon exchange. This is what we expect from factorization, a separation between

k

f(k
t
)

F  (k  )t

Figure 3.7: Physical interpretation of the factorization of eq. (3.19).

different parts of the dynamics of the scattering process. This interpretation is shown in
Fig. 3.7. It is useful because it can be extended to more complicated cases by a modifica-
tion of the impact factors alone. Each piece can be complicated without modifying the others.

Now, we have our tools and the expected form of the answer, with their help we can
calculate the first step towards Higgs boson diffractive production.

3.3 A simple impact factor

The first step of the calculation is to introduce a quark loop in the upper part of the pomeron
diagram of Fig. 3.3 and to compute the corresponding amplitude. According to Feynman
rules, the amplitude is the sum of all possible ways to draw the same process with Feynman
diagrams. Remember that we work in the high-energy limit so that we can neglect terms
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of order 1/s. We begin by computing the imaginary part of the amplitude via cutting rules
on the two first diagrams (a) and (b) shown in Fig. 3.8 with obviously the same diagrams

p

p’

q q

k

p

p’

p p

q

p p

p+q−k

k k

p’ p’

k

q

q

p’ p’

kk

p+q

q+k

p’−k

q−
k

p+qp+q

q−k

p’−k p’−k

(a) (b) (c)

Figure 3.8: The three diagrams that contribute to the amplitude. Diagram (c) cannot be
cut and lead to a totally real contribution. We shall add later the three same diagrams with
arrows in the opposite direction.

with arrows in the opposite direction. The kinematics is arranged so they have the same
intermediate states. The last possible diagram (c) cannot be cut and leads to a totally real
contribution which does not contribute to the imaginary part. We further simplify the cal-
culation by considering only the contribution at t=0.

We use the Sudakov parametrization so that the intermediate quarks and exchanged gluons
four-momenta are

q = αqp1 +
βq

s
+ q⊥, (3.20)

k =
αk

s
p1 +

βk

s
+ k⊥, (3.21)

with k⊥ and q⊥ in (3.2). The incoming particles are denoted by p and p′ and supposed to
move very close to the p1 and p2 direction respectively, then

p = p1 + bp2, (3.22)
p′ = ap1 + p2. (3.23)

Here we consider the incoming particles massive with a mass M . On the light-cone, we have
p2 = p′2 = M2 and this can be used to determine the parameters a and b .

p2 = 2bp1.p2 = 2b
s

2
= bs = M2,

→ p = p1 +
M2

s
p2.

(3.24)

p′2 = 2ap1.p2 = 2a
s

2
= as = M2,

→ p′ =
M2

s
p1 + p2.

(3.25)

We rename M2 = µ and express the quark four-momenta in terms of the new variables,
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p + q = (αq + 1)p1 +
(βq + µ)

s
p2 + q⊥, (3.26)

q − k = (αq − αk

s
)p1 +

(βq − βk)
s

p2 + (q⊥ − k⊥), (3.27)

p′ − k =
(µ− αk)

s
p1 + (1− βk

s
)p2 − k⊥, (3.28)

q − k + p = (αq − αk

s
+ 1)p1 +

(βq − βk + µ)
s

p2 + (q⊥ − k⊥). (3.29)

The corresponding denominators of the six propagators in the large-s limit are

(p + q)2 = (αq + 1)(βq + µ) + q2
⊥, (3.30)

(q − k)2 ' αq(βq − βk) + (q⊥ − k⊥)2, (3.31)
(p′ − k)2 ' (µ− αk) + k2

⊥, (3.32)
(q − k + p)2 = (αq + 1)(βq − βk + µ) + (q⊥ − k⊥)2, (3.33)

and

q2 = αqβq + q2
⊥, (3.34)

k2 ' k2
⊥. (3.35)

The imaginary part of the amplitude is obtained by cutting rule under the condition of
positive energy in the loop:

(p + q).(k − q) > 0 (p + q).p > 0
(p + q).(p′ − k) > 0 (p′ − k).p > 0
(q − k).(p′ − k) > 0 (q − k).p > 0

(3.36)

Hence, the upper limit on q2
⊥ and k2

⊥ is of order s and we will use s as the limit in the
rest of the calculation. We can also evaluate the domain of the variable αq by the physical
interpretation of the Sudakov parametrization since the coefficients of p1 and p2 have to be
positive for quarks and negative for antiquarks. For example, in

p + q = (αq + 1)p1 +
(βq + µ)

s
p2 + q⊥, (3.37)

we need

αq + 1 > 0, (3.38)
βq + µ > 0. (3.39)

By applying this to the three cut propagators, we find

−1 < αq < 0
µ < βq < βk

0 < αk < µ
βq < βk < s

(3.40)

We will use these conditions in the last integration on αq.
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Figure 3.9: Notation in order to compute the color factor.

Color factor

The color factor of the diagram C is (see Fig. 3.9)

C =
∑

abc

(
λa

2
)ji(

λb

2
)ij(

λa

2
)kl(

λb

2
)lk

= Tr(
λa

2
λb

2
)Tr(

λa

2
λb

2
)

=
1
4
δaa

= 2.

(3.41)

Let us now compute the six diagrams that contribute to the impact factor.

Diagram a

First we study the diagram (a) drawn in Fig. 3.10. The intermediate quarks are massless,

p p

p’p’

q q

k k

p+q

q−k

p’−k

νµ

Figure 3.10: First piece of the amplitude: Ma1.

mq = 0, the coupling constant is g at the scalar vertices and gs at the quark/gluon vertices.
According to Feynman rules the amplitude is

Ma1 = (−igs)2C
∫

d4k

(2π)4
Tr[p′/γν(p′/− k/)γµ]

[(p′ − k)2 + iη][k2 + iσ]2
×Qa1(q). (3.42)

with Qa1(q) comes from the quark loop,

Qa1(q) = (−1)(−ig)2(−igs)2
∫

d4q

(2π)4
Tr[(p/ + q/)q/γµ(q/− k/)γνq/]

[(p + q)2 + iε][q2 + iρ]2[(q − k)2 + iδ]
. (3.43)
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We express the amplitude in terms of the Sudakov variables and replace the three cut prop-
agators by a δ-function to obtain the discontinuity of the diagram,

Disc(Ma1) = g2
s

C

2s(2π)2

∫
dαkdβkd

2k⊥
(2π)2

N2

[k2
⊥]2

2πδ[(p′ − k)2]×Q(αq, βq, q
2
⊥), (3.44)

Qa1(αq, βq, q
2
⊥) = g2

sg
2 1
2(2π)2

∫
dαqdβqd

2q⊥
(2π)2

N1

[αqβq + q2
⊥]2

×2πδ[(p+q)2]2πδ[(q−k)2]. (3.45)

The numerators N1 and N2 are the traces on the fermion lines that we compute with the help
of REDUCE. We first perform the loop integral and give the details for one of the δ-functions
because the method is the same for the others. We have

δ[(p + q)2] = δ[(αq + 1)(βq + µ) + q2
⊥]

= δ[βq − (
−q2

⊥
αq + 1

− µ)]
1

αq + 1
,

(3.46)

where the last fraction is the jacobian of the δ-function coming from the property

δ(ax) =
1
|a|δ(x). (3.47)

Performing the integral over βq is equivalent to replacing βq by ( −q2
⊥

αq+1 − µ) in the expression
of the amplitude. Hence we obtain

DiscMa1 = −g2
s

C

4sπ

∫
d2k⊥
(2π)2

N2

[k4
⊥]

× g2
sg

2 1
4

∫
dαqd

2q⊥
(2π)2

N1

[q2
⊥ − (αq + 1)µ]2

1
(αq + 1)

.

(3.48)

We now compute the two traces, replace βq, αk and βk by their value coming from the three
δ-functions and take the limit for s large, i.e. neglect all terms in 1/s. In order to compute
N1 and N2 , we use Gribov’s trick. We want to compute the two pieces, the pomeron part
and the impact factor part, of our diagram separately but both need the contribution of
the second to contract the indices in the trace. Hence, we replace each quark/gluon vertex
by a quark/gluon eikonal vertex5 that consists of replacing γν and γµ in the usual vertex
by p′ν/

√
s and p′µ/

√
s to simulate the contribution of the lower line in the quark loop and

pν/
√

s, pµ/
√

s to simulate the contribution of the upper line in the trace N2. We can now
compute the traces and we find

N1 ' −8s
αq

αq + 1
q2
⊥, (3.49)

N2 ' 8s. (3.50)

Note that we absorb a factor 4 from the trace in the general factor in front of the amplitude.
The imaginary part of the calculated diagram is half the discontinuity that we have just
calculated,

5This method is inspired by Lech Szymanowski’s works and reference [3].
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Im(Ma1) = g2
s

s

2π

∫
d2k⊥
(2π)2

1
[k4
⊥]
× g2

sg
2

∫
dαqd

2q⊥
(2π)2

q2
⊥

[q2
⊥ − (αq + 1)µ]2

, (3.51)

this is the first piece of our calculation.

From that, it is easy to compute the diagram with arrows in the opposite direction shown
in Fig. 3.11 because it can be obtained by a simple change of variable, q → p + q − k. The

p p

p’p’

k k

p’−k

p+q

q−k

p+q−k p+q−k

Figure 3.11: Second piece of the amplitude: Ma2.

amplitude is thus,

Ma2 = (−ig)2sC
∫

d4k

(2π)4
Tr[p′/γν(p′/− k/)γµ]

[(p′ − k)2 + iη][k2 + iσ]2
×Qa2(q). (3.52)

with Qa2(q) from the quark loop,

Qa2(q) = (−1)g2
sg

2

∫
d4q

(2π)4
Tr[(p/ + q/− k/)γν(p/ + q/)γµ(p/ + q/− k/)(q/− k/)]

[(p + q)2 + iε][(p + q − k)2 + iρ]2[(q − k)2 + iδ]
. (3.53)

By cutting rules we have

Disc(Ma2) = −g2
s

C

4sπ

∫
d2k⊥
(2π)2

N2

[k4
⊥]

× g2
sg

2 1
4

∫
dαqd

2q⊥
(2π)2

N1

[(q⊥ − k⊥)2 − (αq + 1)αqµ]2
αq

(αq + 1)
,

(3.54)

with the two traces in the large-s limit

N1 ' −8s
(αq + 1)

αq
(q⊥ − k⊥)2, (3.55)

N2 ' 8s. (3.56)

Therefore, the imaginary part of the studied diagram is

ImMa2 = g2
s

s

2π

∫
d2k⊥
(2π)2

1
[k4
⊥]
× g2

sg
2

∫
dαqd

2q⊥
(2π)2

(q⊥ − k⊥)2

[(αq + 1)αqµ]2 − (q⊥ − k⊥)2
. (3.57)
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p p

p’ p’

q p+q−k

k k

p’−k

p+q

q−
k

Figure 3.12: Third piece of the amplitude: Mb1.

Diagram b

We now compute the diagram b in Fig. 3.12, let us just write the main step. The amplitude
is ,

Mb1 = (−igs)2C
∫

d4k

(2π)4
Tr[p′γν(p′/− k/)γµ]

[(p′ − k)2 + iη][k2 + iσ]2
×Qb1(q). (3.58)

with Qb1(q) the quarks loop,

Qb1(q) = (−1)g2
sg

2

∫
d4q

(2π)4
Tr[(p/ + q/− k/)γν(p/ + q/)q/γµ(q/− k/)]

[(p + q)2 + iε][(p + q − k)2 + iρ][(q − k)2 + iδ][q2 + iσ]
. (3.59)

By cutting rules we have

Disc(Mb1) = −g2
s

C

4sπ

∫
d2k⊥
(2π)2

N2

[k4
⊥]

× g2
sg

2

4

∫
dαqd

2q⊥
(2π)2

N1

[q2 − (αq + 1)µ][(αq + 1)αqµ− (q⊥ − k⊥)2]
αq

(αq + 1)
,

(3.60)

and the two traces in the large-s limit

N1 ' −8s(q2
⊥ − k⊥.q⊥), (3.61)

N2 ' 8s. (3.62)

Thus, the imaginary part of the studied diagram is

Im(Mb1) = g2
s

s

2π

∫
d2k⊥
(2π)2

1
[k4
⊥]

× g2
sg

2

∫
dαqd

2q⊥
(2π)2

(q2
⊥ − k⊥.q⊥)

[q2 − (αq + 1)µ][(αq + 1)αqµ− (q⊥ − k⊥)2]
.

(3.63)

From that and with the change of variable q → p + q − k, we compute the diagram show in
Fig. 3.13. The amplitude is,

Mb2 = (−igs)2C
∫

d4k

(2π)4
Tr[p′γν(p′/− k/)γµ]

[(p′ − k)2 + iη][k2 + iσ]2
×Qb2(q). (3.64)

with Qb2(q) from the quark-loop,
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p p

p’ p’

q p+q−k

k k

p’−k

p+q

q−
k

Figure 3.13: Fourth piece of the amplitude: Mb2.

Qb2(q) = (−1)g2
sg

2

∫
d4q

(2π)4
Tr[(p/ + q/)γµ(p/ + q/− k/)(q/− k/)γν(q/)]

[(p + q)2 + iε][(p + q − k)2 + iρ][(q − k)2 + iδ][q2 + iσ]
. (3.65)

By cutting rules we have,

Disc(Mb2) = −g2
s

C

4sπ

∫
d2k⊥
(2π)2

N2

[k4
⊥]

× g2
sg

2

4

∫
dαqd

2q⊥
(2π)2

N1

[q2 − (αq + 1)µ][(αq + 1)αqµ− (q⊥ − k⊥)2]
αq

(αq + 1)
,

(3.66)

and the two traces in the large-s limit

N1 ' −8s(q2
⊥ − k⊥.q⊥), (3.67)

N2 ' 8s. (3.68)

Hence, the imaginary part of the studied diagram is

Im(Mb2) = g2
s

s

2π

∫
d2k⊥
(2π)2

1
[k4
⊥]

× g2
sg

2

∫
dαqd

2q⊥
(2π)2

(q2
⊥ − k⊥.q⊥)

[q2 − (αq + 1)µ][(αq + 1)αqµ− (q⊥ − k⊥)2]
.

(3.69)

3.3.1 Imaginary part of the amplitude

We now sum the contribution of each diagram to obtain the imaginary part of the amplitude.

Im(Mt) = g2
s

s

2π

∫
d2k⊥
(2π)2

1
k4
⊥

× g2
sg

2

∫
dαqd

2q⊥
(2π)2

[
2(q2

⊥ − k⊥.q⊥)
[q2 − (αq + 1)µ][(αq + 1)αqµ− (q⊥ − k⊥)2]

+
q2
⊥

[q2 − (αq + 1)µ]
+

(q⊥ − k⊥)2

[(αq + 1)αqµ− (q⊥ − k⊥)2]

]
,

(3.70)

that can be written as
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ImMt = g2
s

s

2π

∫
d2k⊥
(2π)2

1
k4
⊥
×F(k⊥). (3.71)

The amplitude is written in two pieces, one looks like the two-gluon exchange (the simplest
pomeron) and the other one F(k⊥) can be interpreted as the impact factor of the incoming
particle. The impact factor is polynomial in αq to the fourth noted P (αq),

F(k⊥) = g2
sg

2

∫
dαqd

2q⊥
(2π)2

P (αq)
[(αq + 1)αqµ− (q⊥ − k⊥)2][q2 − (αq + 1)µ]

, (3.72)

with

P (αq) = α4
qµ

2q2
⊥ + 2α3

qµ
2q⊥.k⊥

+ α2
qµ[2q2

⊥(q⊥.k⊥ − k2
⊥ − 2µ) + µ(k2

⊥ + 2q⊥.k2
⊥)]

+ 2αq[k2
⊥(µ2 − 2µq⊥.k⊥ − q2

⊥) + µq⊥.k⊥(2q⊥.k⊥ − µ)]

+ [q2
⊥(k4

⊥ − 2k2
⊥q⊥.k⊥ + k2

⊥q2
⊥ − 2µq⊥.k⊥)

+ µ(k2
⊥ − 2k2

⊥ − 2k2
⊥q⊥.k⊥ − 2µq⊥.k⊥ + 4(q⊥.k⊥)2)].

(3.73)

This factor can be integrated in αq and contributes to the suppression of a k2
⊥ at the denom-

inator that removes a part of the IR divergence of the amplitude. In the case µ = 0, this
means if the incoming particles are massless, the amplitude has the simple form

ImMt = g2
s

s

2π

∫
d2k⊥
(2π)2

1
k2
⊥
× g2

sg
2

∫
dαqd

2q⊥
(2π)2

1
q2
⊥(q⊥ − k⊥)2

. (3.74)

After integration over αq between -1 and 0 from the condition (3.38), the imaginary part of
the amplitude becomes,

Im(Mt) = g2
s

s

2π

∫
d2k⊥
(2π)2

1
k2
⊥
× g2

sg
2

∫
d2q⊥
(2π)2

1
q2
⊥(q⊥ − k⊥)2

. (3.75)

There is no divergences at large q2
⊥. A quark loop in the lower line as in Fig. 3.14 leads to the

q

l

Figure 3.14: Introduction of the two impact factors via a quark loop.

same answer in term of the four-momentum of the loop l and then the amplitude including
both impact factor is

Im(Mt) =
s

2π

∫
d2k⊥
(2π)2

1
k4
⊥
×F(k⊥)×F(k⊥) (3.76)

with
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F(k⊥) = g2
sg

2

∫
d2q⊥
(2π)2

k2
⊥

q2
⊥(q⊥ − k⊥)2

, (3.77)

The integral diverges at q2
⊥ = 0 and k2

⊥ = q2
⊥ but because of the large-s limit, we neglected

all the 1/s terms. Actually, the denominator are

[q2
⊥ +O(1/s)]

[(q⊥ − k⊥)2 +O(1/s)].
(3.78)

Then, the neglected terms lead to a contribution in log(s) after the last integration over q2
⊥.

Note that, more physically, this contribution will be cut by confinement effects for real
hadrons, as it corresponds to a long-distance effect. However, as we expected the impact
factors cancel the divergence in k2

⊥.

3.4 Outlook

A complete calculation of a physical diffractive cross section for the production of a Higgs
bosons will be more complex.

The two incoming particles are proton made of three quarks and with a structure that we have
to introduce in the calculation via a wave function. The Higgs is produced via a additional
quark loop on the gluon. In order to produce a Higgs boson or another particle in this kind
of kinematics, we will need larger longitudinal components for these exchanged gluons to
generate the mass of the new particle. Hence the k⊥ factorization may not work so well in
this case.



Chapter 4

Non-perturbative effects:
the Gribov conception

Perturbation theory is a powerful tool in Quantum Electrodynamics and generally in field
theory when the coupling constant of the interaction is small, but with Quantum Chromo-
dynamics, the theory of strong interactions, a lot of problems appears. In fact, the coupling
of the strong interaction has the particularity of increasing when the distance increases and
this leads to a new behavior, color confinement. Because of this strong coupling, the domain
of small virtuality cannot be treated with perturbation theory and is affected by what we
call non-perturbative effects.

In this chapter, we shall speak about the introduction of non-perturbative effects via a new
gluon propagator in a simple calculation. Firstly, we shall describe the physical interest of
the shape of this new propagator and, in the second part of the chapter, we shall perform a
two-gluon exchange calculation. We shall conclude by a brief study of the answer and of the
elements that we have to improve.

4.1 The gluon propagator

In 1978, V.N. Gribov used a new method for the quantization of non-abelian gauge theo-
ries [38] and found that we can write the gluon propagator in a new way. This propagator
deals with non-perturbative effects and includes them in the calculation. Let us explain the
interest of the non-perturbative part inside the propagator and describe its properties.

4.1.1 The Gribov idea

QCD is the theory of strong interactions. The main ingredient are interacting vector bosons
and asymptotic freedom1. This class of theories belongs to a particular group called the
non-Abelian gauge theories [28] that are a little bit more complicated to treat than QED and
lead to some ambiguity in their definition.

As a example, in QED we can derive propagators of the theory from perturbative calculation
but in QCD you cannot do that because higher orders are sensitive to the IR region and
then you cannot know the exact propagators of the theory2. The quantization problem for
non-Abelian gauge theories within the framework of perturbation theory was solved in the

1A theory where the coupling is strong at small momenta but weak at large momenta.
2Even if it is possible to derive the perturbative propagator from the region of energy where we can apply

perturbation theory, the perturbative propagator is different from the exact propagator of QCD.
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end of the sixties by Feynman [39], DeWitt [40] and Faddeev and Popov [41]. After these
works, most of the calculation in QCD use the gluon propagator

Dµν(k2) =
−igµνδ

ab

k2 + iε
(4.1)

in the Feynman gauge where a and b are color indices [27]. This propagator is drawn in
Fig. 4.1 and has the particularity to diverge at low momentum k but has the expected
behavior at large momentum where we can apply perturbation theory. In fact, at large

c

Figure 4.1: Shape of the usual gluon propagator with the limit of validity of the perturbation
theory (pTheory).

energy the coupling of QCD becomes smaller and one finds that perturbation theory starts
to work perfectly for scales bigger than twice the mass of the charm quark mc, this means
about 3 GeV [42]. However, even if the large-momentum behavior of the gluon propagator
is know beyond this limit, we cannot trust the shape of the gluon propagator before. This
is because small momenta correspond to long distance physics and poles on the real axis
in propagators correspond to real particles that propagates far away in space3. Meanwhile,
gluons are always confined so that we cannot trust the propagator and the pole of eq. (4.1).
Something must happen in the IR region where non-perturbative effects begin to be important
and must be taken in account. According to Gribov, it is possible to improve the quantization
of non-Abelian field through some modifications in the limitation on the integration range
in the functional space of non-Abelian fields and this calculation leads to a new possible
propagator for the gluon [38],

Dµν(k2) =
−igµνδ

ab

k2 + Λ4

k2

. (4.2)

The momentum of the gluon is k and Λ is a constant related to the scale of energy where
non-perturbative effects begin to appear. This propagator has the shape drawn in Fig. 4.2.
It is not divergent but null at k = 0 and strongly depends on the parameter Λ at small mo-
mentum. We can think that the zero value can be a problem for the physical interpretation
but at least it removes the infrared divergence.

3The boson of QED have a similar propagator with a pole at k = 0 and we know that photons can propagate
onto long distances.
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k

D (k2)

 

 

Figure 4.2: Shape of the Gribov propagator.

This propagator includes non-perturbative effects at low momentum via new poles badly
placed, the Gribov poles, and we can expect a change in the physics at small k. Actually,
we could observe consequences of this change at the LHC if this contribution is large enough
to influence the amplitude. This means that the new contribution of the Gribov poles must
be of order s to be observed and we shall now calculate this contribution for the two-gluon
exchange.

4.2 Contribution from the Gribov poles to the pomeron

We now perform the same calculation as in section 3.2.1 but now the new gluon propagator
is given by

Dµν(k2) =
−iδabgµν

k2 + Λ4

k2

= −iδabgµν
k2

(k2 + iΛ2)(k2 − iΛ2)
, (4.3)

according to eq. (4.2). We will not use the cutting rules because we want to study the
position of the new poles in order to understand their contribution. In the second subsection,
we compare the answer with the usual calculation for the pomeron and we end by a discussion
about the new contribution.

4.2.1 Two-gluon exchange amplitude in the Gribov case

The lowest-order leading Feynman diagrams of the studied process are shown in Fig. 4.3. We

p1 p1
p1

p1

p2 p2 p2p2

k

p1+k p1−k

p2−k

µ ν

µν

ν µ

νµ

k
k k

p2−k

Figure 4.3: The lowest-order leading Feynman diagrams for the two-gluon exchange.
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write k in term of the Sudakov variables,

k = αp1 + βp2 + k⊥, (4.4)

using p2
1 = p2

2 = 0, p1.p2 = s/2 and working in the large s limit. The intermediate quarks
and incoming particles are supposed to be massless, the coupling constant is gs and only the
gluon propagator is changed from the usual calculation. The direct and crossed amplitude
are given by

Ad = (−igs)4C
∫

d4k

(2π)4
Tr[p1/ γµ(p1/ + k/)γν ]k2Tr[p2/ γν(p2/− k/)γµ]k2

[(p1 + k)2 + iε][(p2 − k)2 + iη][(k2 + iΛ2)(k2 − iΛ2)]2

= g4
s

s

2(2π)2

∫
dαdβd2k⊥

(2π)2
Nd

[(α + 1)βs + k2
⊥ + iε][α(β − 1)s + k2

⊥ + iη]P 2
g

(4.5)

Ac = (−igs)4C
∫

d4k

(2π)4
Tr[p1/ γµ(p1/− k/)γν ]k2Tr[p2/ γν(p2/− k/)γµ]k2

[(p1 − k)2 + iε][(p2 − k)2 + iη][(k2 + iΛ2)(k2 − iΛ2)]2

= g4
s

s

2(2π)2

∫
dαdβd2k⊥

(2π)2
Nc

[(α− 1)βs + k2
⊥ + iε][α(β − 1)s + k2

⊥ + iη]P 2
g

.

(4.6)

Nd and Nc are the traces in Sudakov variables and C is the color factor equals to 2/9 as in
the usual calculation. The denominator of the gluon propagator is given by

Pg = [(αβs + k2
⊥ + iΛ2)(αβs + k2

⊥ − iΛ2)]. (4.7)

We now only consider the direct amplitude but it is clear that the method is identical for
the crossed diagram. The direct integrand has four poles, two of them are the usual poles
coming from the quark propagators,

β1 =
−k2

⊥ − iε

(α− 1)s
, (4.8)

β2 =
−k2

⊥ − iη

αs
+ 1, (4.9)

and the new gluon propagator has two double poles at

βg1 =
−k2

⊥ − iΛ2

αs
, (4.10)

βg2 =
−k2

⊥ + iΛ2

αs
. (4.11)

Their positions in function of the value of α is shown in Fig. 4.4. We immediately note that
we have to deal with a new pole βg2 inside the integration contour. Via the Cauchy theorem
for double poles and noting Resβi the residue in βi, we obtain the integral on β

Iβ = 2iπ[
∫ 1

0
Resβ1dα +

∫ ∞

1
Resβg2dα−

∫ 0

−∞
Resβg2dα], (4.12)

the integral on the half circle vanishes because the integrand decreases faster than 1/β2. The
last term of eq. (4.12) leads to the usual contribution of the usual pole in the amplitude but
the sum of the two first terms is the new contribution from the Gribov poles. We keep the
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Figure 4.4: The position of the poles in the β-integral.

usual answer for the end of the calculation and just care about the Gribov contribution that
we note with an index g. The direct diagram gives us

Idg = 2iπ

∫ ∞

0
[Resβg2(α)− Resβg2(−α)]dα. (4.13)

The symmetry of the integrand leads to a result that can be written as a function of α2 and
if we rename α2 = x,

Idg = 2iπ

∫ ∞

0
f(α2)dα2

= 2iπ

∫ ∞

0
f(x)dx.

(4.14)

The result for the crossed diagram leads to the same structure of the α-integral and if we
note Ig the sum of the direct and crossed integrand, we find that we have to compute

Ig =
iπ

9Λ2
C

∫ ∞

0
dx

P (x)
[(k2

⊥ + (x− 1)iΛ2)(k2
⊥ − (x− 1)iΛ2)][(−Λ4 − xs2)2]

, (4.15)

with

P (x) = [(Λ8 + k4
⊥Λ4)s2x2

+ (3k4
⊥Λ8 − Λ12 − Λ8s2 − 4ik2

⊥Λ6s2 + 2k4
⊥Λ4s2 − k8

⊥s2)x

+ (Λ8 − 2k4
⊥Λ4 − 4ik6

⊥Λ2 + k8
⊥)Λ4].

(4.16)

The new integrand has no poles in the domain of integration and then we can perform the
integral on x directly. In the large-s limit, we obtain

Ms
g =

g4
s

4π
C

∫
d2k⊥
(2π)2

Ng

(iΛ2 − k2
⊥)3Λ4

Ng = [2 log(i)− 2 log(s)− 4 log(Λ2)− 2 log(k2
⊥ − iΛ2)](−iΛ6 + 3k2

⊥Λ4 − ik4
⊥Λ2 − k6

⊥)

+ 2(k4
⊥ − Λ4)(iΛ2 − 2k2

⊥).
(4.17)
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We have a divergence of the integral over k⊥ at infinity which may get regulated by the
introduction of an impact factor.

We now have the contribution Mg of the Gribov poles to the total amplitude for two-
gluon exchange and the bad news is that it is not of order s. This means that it misses a
factor 108 in order to have any influence upon the physics at the LHC. However, we will make
a brief study of this result.

4.2.2 Properties of the new contribution

Let us now show some graphics of the different pieces of the amplitude and compare it with
the usual amplitude for two-gluon exchange.

First, we write the Gribov contribution to the amplitude in term of its real part and its
imaginary part in the large-s limit,

Ms
g =

g4
s

4π
C

∫
d2k⊥
(2π)2

[ReMs
g + iImMs

g], (4.18)

with

ReMs
g = −π

NReg

(k2
⊥ + iΛ2)3(k2

⊥ − iΛ2)3Λ2

NReg =
[
4(2 log(Λ2)− log(s))

− log[(k2
⊥ + iΛ2)(k2

⊥ − iΛ2)]
]
(k8
⊥ − 8k4

⊥Λ4 − Λ8)(k2
⊥ + Λ2)(k2

⊥ − Λ2)

+ 4[2k12
⊥ + 2k10

⊥ Λ2π − 5k8
⊥Λ4 − 6k6

⊥Λ6π + 2k4
⊥Λ8 + Λ12

− 2(k4
⊥ − 3Λ4) tan−1(

Λ4

k2
⊥

)k6
⊥Λ2].

(4.19)

The imaginary part is given by

ImMs
g = −2π

NImg

(k2
⊥ + iΛ2)3(k2

⊥ − iΛ2)3Λ2

NImg = 2
[
4(2 log(Λ2)− log(s))− log[(k2

⊥ + iΛ2)(k2
⊥ − iΛ2)]

]
(k4
⊥ − 3Λ4)k6

⊥Λ4

− [k8
⊥π − 10k6

⊥Λ2 − 8k4
⊥Λ4π − 2k2

⊥Λ6 − Λ8π](k2
⊥ + Λ)(k2

⊥ − Λ2)

+ (k8
⊥ − 8k4

⊥Λ4 − Λ8)(k2
⊥ + Λ2)(k2

⊥ − Λ2) tan−1(
Λ4

k2
⊥

).

(4.20)

We set s=100 GeV2 in order to be in the domain of energies where the pomeron begins
to be a large contribution to the amplitude. We choose a value for Λ equal to 1 GeV
because this parameter is related to the energy scale of non-perturbative physics as we explain
in Section 4.1.1. Non-perturbative effects introduced through the Gribov propagator are
supposed to occur at small momenta and the contribution of Gribov poles is important when

Λ4

k2
¿ k2. (4.21)
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Usually ones thinks that non-perturbative effects take places below the mass of the proton
hence we can set Λ=1 GeV or smaller. We draw both the imaginary part and the real part of
the amplitude in Fig. 4.5. First, we do not have a good behavior in k⊥, the real part divergesGribov real partGribov imaginary part

kt [GeV℄
Partsofthe
amplitude

1086420

806040200�20�40�60�80
Figure 4.5: Real part and imaginary part of the Gribov contribution in function of k⊥. We
have set s =100 GeV2 and Λ = 1 GeV.

and the imaginary part quickly becomes a constant. Another note is that the Gribov real
and imaginary contribution goes through zero and is minimum at k⊥ = Λ. Actually, the
divergence of the real and imaginary parts can be explained by the fact that we have no
impact factor in the calculation, we should improve this behavior via the introduction of a
quark loop that shall constrain the β parameter and force k⊥ to be below the inverse radius
of the incoming particles. The second point is the order of this contribution. We expected
an s factor before the last integral but actually, we can show that the leading term in s of
the direct diagram exactly cancels with the leading term in s of the cross diagram and then
after the sum, only the sub-leading terms survive.

We now compare the Gribov contribution to the usual contribution given by

I = ig4sC

∫ s

0

d2k⊥
(2π)2

[
k2

(k2 + iΛ2)(k2 − iΛ2)

]2

. (4.22)

as we calculated4 in section 3.2.1. In the next graph, Fig. 4.6, we draw the contribution
of the Gribov poles to the imaginary part and the usual pole contribution from eq. (4.22).
The last graph, Fig. 4.7, is the total Gribov imaginary part of the amplitude (Gribov poles
contribution+usual poles contribution) compared with the contribution of the old propagator
for the two-gluon exchange. The Gribov contribution is indeed very small in the domain of
interest, i.e. below 1 GeV and cannot change the physics for the studied process. All the

4This answer was found via the same methods: study of the poles and integration by residue. All the
REDUCE program are in Appendix C.2.
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Usual pole 
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Figure 4.6: Contribution of the Gribov poles to the imaginary part and the usual contribution
from eq. (4.22).

Total old imaginary partTotal Gribov immaginary part
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Figure 4.7: Total contribution of Gribov propagator to the imaginary part of the amplitude
(Gribov poles contribution+usual poles contribution) compared with the contribution of the
old propagator for the two-gluon exchange.
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values beyond 1 GeV cannot be trusted because they have to be cut by an impact factor.

Hence, the Gribov contribution is subleading in s and the divergence of the k⊥ integral
must be removed via the introduction of a quark loop.

Symmetry property of diagrams in the large s limit.

As an exercise, we have also checked crossing symmetry of the amplitude: the crossed dia-
gram must be equal to the direct diagram where we change s into −s.

This property is easy to understand with the help of the diagrams drawn in Fig. 4.8. In the

(s) (u)=

p

p’

p

−p’

Figure 4.8: Symmetry in the two-gluon exchange.

first diagram we have

s = (p + p′)2. (4.23)

We obtain the second diagram by a flip of the lower line and this flip corresponds to change
the channel s → u, this is obvious from the definition of u and of the Mandestam variables,

u = 4m2 − t− s

= −s,
(4.24)

in the large-s limit and at zero momentum transfer (t=0). Hence, the subtraction of the
crossed diagram in −s from the direct diagram in s must be zero. Thus, we write a REDUCE
program that adds the direct and crossed diagram after each steps of the calculation and show
it in Appendix C.3.1. It appears that this property is true in our calculation and tells us that
the extraction of real and imaginary parts is correct.

4.3 Conclusion and outlook

In this chapter, we explored the possibility of introducing non-perturbative effects via the
Gribov gluon propagator in the calculation of the amplitude for a given process. We described
the property of this new propagator and performed a calculation of the two-gluon exchange
amplitude in this particular case.

Up to now, we show that the Gribov contribution is subleading in s. We could make some
improvement with a quark loop in order to remove the divergence in k⊥ and study exactly
how this contribution influences the amplitude. If the effects cannot be shown at the LHC,
it could be interesting to explore their importance at lower energies, and particularly the
contribution to the real part.



Conclusion

In this work, we have introduced the basic tools needed to study diffraction in high-energy
physics. We defined the diffractive processes and explained their interest in the detection of
particles but also the interest of diffraction as a QCD laboratory, a field to test the theory
and a discovery channel for the Higgs boson. In the second chapter, we introduced our tools.
Cutting rules that allow us to calculate directly the imaginary part of a Feynman diagram
and the Optical theorem or the dispersion relations that relate this imaginary part to the
total amplitude and measurable quantities as the cross section. We illustrate this chapter by
a simple calculation using all the tools and variables introduced previously. From that, we
understood that a main ingredient of diffractive and high-energy physics is the pomeron. This
was the topic of the third chapter. The exact nature of the pomeron is not know and we shown
that the BFKL description or the Regge approach have some problems to describe this tra-
jectory. The lack of sound theory let us think that QCD has yet interesting problems to solve.

After that, we presented the first calculation in this work. From the previous chapter, we
think that diffractive production is a possible way of production of the Higgs boson but com-
plete models for it are complex. Hence, we want to develop a simple method of calculation
that we shall complicate in later studies. We divide our calculation in pieces and calculate
the first step, a two-gluon exchange between two quark loops. The results was interesting be-
cause it removed the divergence in the IR region and enabled us to interpreted physically the
different pieces of the calculation, the impact factor and the usual two-gluon exchange. The
calculation can lead to the diffractive production of a Higgs boson via some improvement,
the addition of a quark loop in the kinematics of the gluon, the introduction of momentum
transfer ∆ 6= 0 in order to obtain longitudinal momentum to produce the mass of the Higgs.

The second calculation was the introduction of non-perturbative effects in a known amplitude
via a new gluon propagator introduced by Gribov. This propagator includes a parameter Λ
related to the scale of energy at which non-perturbative effects begin to appear. This study
was preliminary and needs improvements. Firstly, we have to introduce the impact factor in
the upper and lower fermions lines to remove the divergence in k⊥ and study the importance
of the value of Λ in the model. Secondly, it will be interesting to study the real part of
the diagram because, as we shown, this part is important and can change details of the
physics. This calculation also needs a more detailed study of the different steps and a complete
comprehension of the influence of the transverse momentum.



Appendix A

Integration by residue

Most of the integrals of this work are performed by residue theorem. The method of integra-
tion comes from the Cauchy theorem of integration on a closed curve.

A.1 Residue theorem

Residue theorem 1 If f(z) is an analytic and uniform function inside and on a closed
contour C expect at a finite number of singularities z1,..., zn inside C, then

∮

C
f(z)dz = 2iπ

n∑

m=1

Reszm [f(z)],

with Reszm [f(z)] the residue of f(z) in the pole zm, with C is the curve show in Fig. A.1.

z
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z
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3

Figure A.1: Closed contour defines by the Cauchy theorem.

The definition of the residue depends of the multiplicity of the poles zm for a given function
f(z).

1. Simple pole: Reszm [f(z)] = limz→zm(z − zm)f(z).

2. Pole of order α: Reszm [f(z)] = 1
(n−1)! limz→zm

dα−1

dzα−1 (z − zm)αf(z).

In practice, we shall integrate on a closed contour in a half-complex plane that will be always
similar to the one in Fig. A.2. The integral in the total contour C is divided in integrals on
the different pieces,

∮

C
f(z)dz =

∫

C∞
f(z)dz +

∫

Cε

f(z)dz +
∫

Cη1

f(z)dz +
∫

Cη2

f(z)dz +
∫

CR

f(z)dz, (A.1)
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Figure A.2: Closed contour.

where C∞ is the big half semicircle and Cε the little one around the pole. The contribution
of Cη1 and Cη2 are exactly the same but with an opposite sign and their sum always leads to
zero as η → 0. The integration on CR is equivalent to the principal part of an integration
along the real axis,

p
∫ ∞

−∞

f(z)
z − zm

dx = lim
ε→0

[ ∫ z0−ε

−∞
+

∫ ∞

z0+ε

]
f(z)

z − z0
dz, (A.2)

where z0 are the position of the pole zm on the real axis. Then we have to compute the
contribution of C∞ and Cε that is the contribution of the pole to the integral. However,
the contribution from the big contour is usually zero when the contour goes to infinity.
Mathematically, if R → ∞ the contribution from

∫
C∞ f(z)dz → 0 through the Estimation

lemma.

Estimation lemma 1 If C∞ is an arc of center z0 and of radius R intercepted by an oriented
angle β, f(z) a continuous function in the closed sector |z − z0| ≥ R0 and such as

z
0

C
R

R
0

β

lim
z→∞(z − z0)f(z) = L,

with L ∈ IC. Then
lim

R→∞

∫

C∞
f(z)dz = iLβ

We immediately see that this limit is zero if the function f(z) decreases faster than 1/z.



Appendix B

Feynman rules

Let us remind the reader of the Feynman rules for the theories used in this work.
In both of them:

• Momentum is conserved at each vertex.

• Undetermined loop momenta are integrated over
∫ d4p

(2π)4
.

• Fermion loops are multiplied by -1

All the rule are in written in the Feynman gauge.

B.1 Feynman rules for QCD

The gauge invariant lagrangian for QCD is

L = q̄(iγµδµ −m)q − g(q̄γµTaq)Aa
µ −

1
4
Ga

µνG
µν
a . (B.1)

Feynman rules for QCD:

Diagram Rule

k

µ ν
−igµνδab

k2+iε

p i(p/+m)
p2−m2

q+iε

µ

a −igsγ
µ λa

2
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B.2 Feynman rules for φ3 theory

The gauge invariant lagrangian for φ3 theory is

L =
1
2
(δµφ)2 − m

2
φ2 − λ

3!
φ3. (B.2)

Feynman rules for φ3 theory:

Diagram Rule

p i
p2−m2

q+iε

−iλ



Appendix C

REDUCE programs

In this section of the appendix, we show the REDUCE programs that were used during our
work. Most of the programs has the same structure:

1. A common part with the definition of variables, vectors and the trace in the numerator.

2. The complete calculation of the amplitude with poles, residues and integration.

3. The amplitude calculation by cutting rules.
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C.1 One loop diagram in Sudakov variables

→ONE LOOP DIAGRAM in SUDAKOV VARIABLES

→Definition of vectors and variables
vector p1,p2,p;
vector q,qt;
Svertex:=-ima*g;
mq:=0;

→Definition of the scalar products
let p1.p1=0;
let p2.p2=0;
let p1.p2=s/2;

→Change of variables
p:=p1+m/s*p2;
q:=aq*p1+bq/s*p2+qt;
jacq:=1/2;
let p1.qt=0;
let p2.qt=0;

→Numerator
n:=(-1)*[Svertex*(g(l1,p+q)+mq)*Svertex*(g(l2,-p+q)+mq)];
index mu,nu;
n:=8*n;

→Propagators denominators
Pq:=(p+q).(p+q)-mq**2+ima*epsi;
Pq1:=(-p+q).(-p+q)-mq**2+ima*epsi;

→COMPLETE CALCULATION
→Study of the integral if bq=m or bq=-m

bq:=-m;
Int:=[n]/[Pq*Pq1];
solve(den(Int),aq);

→Poles for aq
solve(Pq,aq);
aq1:=part(ws,1,2);
solve(Pq1,aq);
aq2:=part(ws,1,2);
epsi:=0;

→Residue1
aq-aq1;
resa:=[2*ima*Pi]/[Pq1*(bq+m)];
dresa:=sub(aq=aq1,den(resa));
nresa:=sub(aq=aq1,n);

→pole for bq
Pq1:=-dresa+ima*eta;
n:=nresa;
solve(Pq1,bq);
bq1:=part(ws,2,2);
eta:=0;

→Residue2
bq-bq1;
resb:=-1*-1*[2*ima*Pi]/[bq-sqrt(m**2+m*qt.qt)];
dresb:=sub(bq=bq1,den(resb));
nresb:=sub(bq=bq1,nresa);

→Amplitude
ampl:=[nresb*jacq*jacp]/[dresb*(2*Pi)**4];

end;

→By CUTTING RULES
epsi:=0;
eta:=0;

→Cut
c1:=solve(pq,aq);
aq:=part(ws,1,2);
c2:=solve(pq1,bq);
bq:=part(ws,2,2);

→Amplitude
amplc:=ima*[n*jacp*jacq]/[(2*Pi)**4 *(bq-sqrt(m**2+m*qt.qt))];

end;
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C.2 Two gluon exchange

→TWO-GLUON EXCHANGE

→Definition of vectors and variables
vector p1,p2;
vector k,kt;
Gvertex:=-ima*gs;

→Definition of the scalar products
let p1.p1=0;
let p2.p2=0;
let p1.p2=s/2;

→Change of variables
k:=ak*p1+bk*p2+kt;
jac:=s/2;
let p1.kt=0;
let p2.kt=0;
%m:=0;

→Propagators
Pr1:=(p1-k).(p1-k)-m**2+ima*epsi;
Pg1:=k.k+ima*epsi;
Pg2:=k.k+ima*epsi;
Pr3:=(p2+k).(p2+k)-m**2+ima*epsi;
Pr3c:=(p2-k).(p2-k)-m**2+ima*epsi;

→Poles
solve(Pr1,bk);
bk1:=part(ws,1,2);
solve(Pr3,bk);
bk3:=part(ws,1,2);
solve(Pr3c,bk);
bk3c:=part(ws,1,2);
solve(Pg,bk);
bk2:=part(ws,1,2);
epsi:=0;

→Numerator
ft:=8;
nint:=[Gvertex*g(l1,p1,mu,p1,nu)*Gvertex

*g(l2,p2,nu,p2,mu)*Gvertex*Gvertex]*1/s**2;
nintc:=[Gvertex*g(l1,p1,nu,p1,mu)

*Gvertex*g(l2,p2,mu,p2,nu)*Gvertex*Gvertex]*1/s**2;
index mu,nu;
nint;
nintc;

→Residue
%res:=[int*(bk-bk1)];
%res;
dint:=Pg1*Pg2*Pr3;
dintc:=Pg1*Pg2*Pr3c;
re:=[nint]/[(s*(ak-1))*dint];
rec:=[nintc]/[(s*(ak-1))*dintc];
re;
intn:=-2*ima*Pi*re;
rec;
intnc:=-2*ima*Pi*rec;
bk:=bk1; →Amplitude
intn;
intnc;
inta:=jac*ft*(intn+intnc);
let kt.kt=ktt;
on factor;
inta;
Suite and integration: ampl.red

end;
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→SUITE POM.RED
→Integration over alpha

intn:=( - 8*(ak**2*kt**2 - 3*ak**2 *m**2-2*ak*kt**2
+4*ak*m**2 +2*kt**2-2*m**2)*
(ak - 1)**2*gs**4 *ima*pi*s**2)/((ak**2*s - ak*s + kt**2 - m**2)*
(ak**2*s - ak*s - kt**2+ m**2)*(ak*m**2 - kt**2)**2);

%m:=0;
intn2:=sub(ak=(ak/s),intn);
jaca:=1/s;
intn2:=intn2*jaca;
Sintn:=lterm(num(intn2),s)/lterm(den(intn2),s);
Sintn;
inta:=int(Sintn,ak);
ao:=sub(ak=0,inta);
ai:=sub(ak=1,inta);
Ampl:=ai-ao;
Amplg;

→Leading term
Sampl:=lterm(num(ampl),s)/lterm(den(ampl),s);
Sampl;

end;
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C.3 Gribov contribution

→GRIBOV PROPAGATOR
→Addition of the Gribov contribution

→Definition of vectors and variables
vector p1,p2;
vector k,kt;
Gvertex:=-ima*gs;

→Definition of the scalar products
let p1.p1=0;
let p2.p2=0;
let p1.p2=s/2;

→Change of variables
k:=ak*p1+bk*p2+kt;
jac:=s/2;
let p1.kt=0;
let p2.kt=0;
m:=0;

→Propagators
Pr1:=(p1-k).(p1-k)-m**2+i*epsi;
Pr2a:=(kt.kt+ak*bk*s+ima*(la**2))**2;
Pr2b:=(kt.kt+ak*bk*s-ima*(la**2))**2;
Pr3:=(p2+k).(p2+k)-m**2+i*epsi;
Pr3c:=(p2-k).(p2-k)-m**2+i*epsi;

→Poles
dint:=Pr1*Pr3;
dintc:=Pr1*Pr2*Pr3c*Pr4;
solve(Pr1,bk);
%bk1:=part(ws,1,2);
solve(Pr3,bk);
%bk2:=part(ws,1,2);
solve(Pr3c,bk);
%bk2c:=part(ws,1,2);
gr:=solve(Pr2,bk);
bk3:=part(gr,1,2);
bk4:=part(gr,2,2);
epsi:=0;
bk3:=(-kt.kt+ima*(la**2))/(ak*s);

→Numerator
ft:=2/9;
nint:=[Gvertex*g(l1,p1,mu,p1-k,nu)*Gvertex*g(l2,p2,nu,p2+k,mu)*Gvertex*Gvertex];
nintc:=[Gvertex*g(l1,p1,nu,p1-k,mu)*Gvertex*g(l2,p2,mu,p2-k,nu)*Gvertex*Gvertex];
index mu,nu;
nint;
nintc;

→Residue
%res:=df[int*(bk-bk3)**2];
%res;
Pr1:=(p1-k).(p1-k)-m**2;
Pr3:=(p2+k).(p2+k)-m**2;
Pr3c:=(p2-k).(p2-k)-m**2;
dint:=Pr1*Pr3;
dintc:=Pr1*Pr3c;
re:=[nint*((kt.kt+ak*bk*s)**2)]/[((ak*s)**2)*dint*pr2a];
rec:=[nintc*((kt.kt+ak*bk*s)**2)]/[((ak*s)**2)*dintc*pr2a];
re;
res:=-df(re,bk);
rec;
resc:=-df(rec,bk);
bk:=bk3;
res;
intg:=2*ima*Pi*[sub(ak=akk,res)-sub(ak=-akk,res)];
resc;
intgc:=2*ima*Pi*[sub(ak=akk,resc)-sub(ak=-akk,resc)];

→Amplitude
intg;
intgc;
amplg:=jac*ft*(intg+intgc);
amplg:=amplg/(2*akk);
let akk**2=x;
let kt.kt=ktt;
let la**2=l;
on factor;
amplg;

%Suite and integration: amplg.red
end;
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→RESULTS of POMG.RED

intg :=(2*(ima**6 *l**6*x-ima**6*l**6+ 3*ima**4*kt**4 *l**4*x
-2*ima**4*kt**4*l**4+ima**4*l**4*s**2*x**2-ima**4*l**4*s**2*x
+4*ima**3*kt**6*l**3+4*ima**3*kt**2*l**3*s**2*x-ima**2*kt**8 *l**2
-ima**2*kt**4*l**2*s**2*x**2- 2*ima**2*kt**4*l**2 *s**2*x
-kt**8 *s**2 *x)*gs**4 *ima**4 *pi*s**2 )/((ima**2*l**2*x
-ima**2 *l**2 +2*ima*kt**2*l-kt**4)**2
*(ima**2 *l**2- s**2 *x)**2 *l);

intg;
inta:=int(intg,x);
ao:=sub(x=0,inta);
x:=1/y;
inta;

let log((ima**2 *l**2 *y-s**2)/y)=log(ima**2 *l**2 *y-s**2)-log(y);
let log((-ima**2 *l**2 *y+ima**2 *l**2+2*ima*kt**2 *l*y-kt**4*y)/y)

=log(-ima**2 *l**2 *y+ima**2 *l**2+2*ima*kt**2*l*y-kt**4*y)-log(y);

inta;
ai:=sub(y=0,inta);
Amplg:=ai-ao;
Amplg;

let log(-(s**2))=log(-1)+2log(s);
let log(-(l**2))=log(-1)+2log(l);

Amplg:=Amplg;
→Leading term

Samplg:=lterm(num(amplg),s)/lterm(den(amplg),s);
Samplg;
let log(-s**2)=log(-1)+2log(s);
samplg;

→Leading-log
Lamplg:=lterm(num(samplg),log(s))/lterm(den(samplg),log(s));
Lamplg;

end;
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C.3.1 Symmetry property of diagram in the large s limit

→AMPL VERSUS AMPLGC
→Check step by step of the symmetry s/-s

→Definition of vectors and variables
vector p1,p2;
vector k,kt;
Gvertex:=-ima*gs;
let p1.p1=0;
let p2.p2=0;
let p1.p2=s/2;

→Change of variables
k:=ak*p1+bk*p2+kt;
jac:=s/2;
let p1.kt=0;
let p2.kt=0;
m:=0;

→Direct and cross amplitude
ft:=8;
nint:=[Gvertex*g(l1,p1,mu,p1-k,nu)*Gvertex*g(l2,p2,nu,p2+k,mu)*Gvertex*Gvertex];
nintc:=[Gvertex*g(l1,p1,nu,p1-k,mu)*Gvertex*g(l2,p2,mu,p2-k,nu)*Gvertex*Gvertex];
index mu,nu;
nint;
nintc;

Pr1:=(p1-k).(p1-k)-m**2;
Pr3:=(p2+k).(p2+k)-m**2;
Pr3c:=(p2-k).(p2-k)-m**2;
Pr2a:=(kt.kt+ak*bk*s+ima*(la**2))**2;
Pr2b:=(kt.kt+ak*bk*s-ima*(la**2))**2;

dint:=Pr1*Pr3;
dintc:=Pr1*Pr3c;
re:=[nint*((kt.kt+ak*bk*s)**2)]/[((ak*s)**2)*dint*pr2a];
rec:=[nintc*((kt.kt+ak*bk*s)**2)]/[((ak*s)**2)*dintc*pr2a];
re;
res:=-df(re,bk);
rec;
resc:=-df(rec,bk);
bk3:=(-kt.kt+ima*(la**2))/(ak*s);
bk:=bk3;
res;
intg:=2*ima*Pi*[sub(ak=akk,res)-sub(ak=-akk,res)];
resc;
intgc:=2*ima*Pi*[sub(ak=akk,resc)-sub(ak=-akk,resc)];

T1:=sub(s=ss,amplg)-sub(s=-ss,amplgc);

→Amplitude
intg;
intgc;
amplg:=jac*ft*intg;
amplgc:=jac*ft*intgc;
amplg:=amplg/(2*akk);
amplgc:=amplgc/(2*akk);
let akk**2=x;
let kt.kt=ktt;
let la**2=l;

T2:=sub(s=ss,amplg)-sub(s=-ss,amplgc);

on factor;
amplg;
amplgc;

%Integration sur alpha: fichier avsac2.red
end;
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→AMPL VERSUS AMPLGC
→Integration on alpha

intg;=((ima**6*ktt*l**6*x+ima**6*ktt*l**6+ima**6*l**6*s*x
-ima**6*l**6*s-2*ima**5*ktt**2*l**5-2*ima**5*l**5*s**2*x**2
+2*ima**5*l**5*s**2*x+ima**4*ktt**3*l**4 + 3*ima**4*ktt**2*l**4*s*x
-2*ima**4*ktt**2*l**4*s+ima**4*ktt*l**4*s**2*x**2-13*ima**4*ktt*l**4*s**2*x
+6*ima**4*ktt*l**4*s**2+ima**4*l**4*s**3*x**2- ima**4*l**4*s**3*x
+4*ima**3*ktt**3*l**3*s+16*ima**3*ktt**2*l**3*s**2*x-16*ima**3*ktt**2*l**3*s**2
+4*ima**3*ktt*l**3*s**3*x-ima**2*ktt**4*l**2*s-3*ima**2*ktt**3*l**2*s**2*x
+14*ima**2*ktt**3*l**2*s**2-ima**2*ktt**2*l**2*s**3*x**2-2*ima**2*ktt**2*l**2*s**3*x
+2*ima**2*ktt*l**2*s**4*x**2-2*ima**2*ktt*l**2*s**4*x-4*ima*ktt**4*l*s**2
-4*ima*ktt**2*l*s**4*x**2+4*ima*ktt**2*l*s**4*x-ktt**4*s**3*x
-2*ktt**3*s**4*x)*gs**4*ima**4*pi*s)
/((ima**2*l**2*x-ima**2*l**2+2*ima*ktt*l-ktt**2)**2*(ima**2*l**2-s**2*x)**2*l);

intgc:=(-(ima**6*ktt*l**6*x+ima**6*ktt*l**6-ima**6*l**6*s*x
+ima**6*l**6*s- 2*ima**5*ktt**2*l**5-2*ima**5*l**5*s**2*x**2
+2*ima**5*l**5*s**2*x+ima**4*ktt**3*l**4-3*ima**4*ktt**2*l**4*s*x
+2*ima**4*ktt**2*l**4*s+ima**4*ktt*l**4*s**2*x**2-13*ima**4*ktt*l**4*s**2*x
+6*ima**4*ktt*l**4*s**2-ima**4*l**4*s**3*x**2+ima**4*l**4*s**3*x
-4*ima**3*ktt**3*l**3*s+16*ima**3*ktt**2*l**3*s**2*x-16*ima**3*ktt**2*l**3*s**2
-4*ima**3*ktt*l**3*s**3*x+ima**2*ktt**4*l**2*s-3*ima**2*ktt**3*l**2*s**2*x
+14*ima**2*ktt**3*l**2*s**2+ima**2*ktt**2*l**2*s**3*x**2+2*ima**2*ktt**2*l**2*s**3*x
+ 2*ima**2*ktt*l**2*s**4*x**2 - 2*ima**2*ktt*l**2*s**4*x-4*ima*ktt**4*l*s**2
-4*ima*ktt**2*l*s**4*x**2+ 4*ima*ktt**2*l*s**4*x + ktt**4*s**3*x
-2*ktt**3*s**4*x)*gs**4*ima**4*pi*s)/((ima**2*l**2*x
-ima**2*l**2+2*ima*ktt*l-ktt**2)**2*(ima**2*l**2-s**2*x)**2*l);

intg;
intgc;

T3:=sub(s=ss,intg)-sub(s=-ss,intgc);

inta;
intac;

T5:=sub(s=ss,inta)-sub(s=-ss,intac);

ao:=sub(x=0,inta);
aoc:=sub(x=0,intac);
x:=1/y;
inta;
intac;
let log((ima**2 *l**2 *y-s**2)/y)=log(ima**2 *l**2 *y-s**2)-log(y);
let log((-ima**2 *l**2 *y+ima**2 *l**2+2*ima*kt**2 *l*y-kt**4*y)/y)

=log(-ima**2 *l**2 *y+ima**2 *l**2+2*ima*kt**2 *l*y-kt**4*y)-log(y);
ai:=sub(y=0,inta);
aic:=sub(y=0,intac);
amplg:=ai-ao;
amplgc:=aic-aoc;

T7=sub(s=ss,amplg)-sub(s=-ss,amplgc);

Amplgt:=amplg+amplgc;
→Leading term

Samplg:=lterm(num(amplg),s)/lterm(den(amplg),s);
Samplgc:=lterm(num(amplgc),s)/lterm(den(amplgc),s);
Samplgt:=lterm(num(amplgt),s)/lterm(den(amplgt),s);

T9:=sub(s=-ss,Samplg)-sub(s=ss,Samplgc);

→Leading-Log
Lsa:=lterm(num(Samplg),log(s))/lterm(den(Samplg),log(s));
Lsac:=lterm(num(Samplgc),log(s))/lterm(den(Samplgc),log(s));
Lsat:=lterm(num(Samplgt),log(s))/lterm(den(Samplgt),log(s));

T10=sub(s=ss,Lsa)-sub(s=-ss,Lsac);

end;
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