$$\begin{split} \sigma_{pp} &= A + B \cdot \ln \, s + C \cdot \ln^2 \, s + Y_1^{pp} s^{-\eta_1} - Y_2^{pp} s^{-\eta_2}, \\ \sigma_{pp} &= A + B \cdot \ln \, s + C \cdot \ln^2 \, s + Y_1^{pp} s^{-\eta_1} + Y_2^{pp} s^{-\eta_2}, \\ \sigma_{\pi^+ p} &= \lambda_{\pi p} (A + B \cdot \ln \, s + C \cdot \ln^2 \, s) + Y_1^{\pi p} s^{-\eta_1} - Y_2^{\pi p} s^{-\eta_2}, \\ \sigma_{\pi^- p} &= \lambda_{\pi p} (A + B \cdot \ln \, s + C \cdot \ln^2 \, s) + Y_1^{Kp} s^{-\eta_1} - Y_2^{Kp} s^{-\eta_2}, \\ \sigma_{K^+ p} &= \lambda_{Kp} (A + B \cdot \ln \, s + C \cdot \ln^2 \, s) + Y_1^{Kp} s^{-\eta_1} - Y_2^{Kp} s^{-\eta_2}, \\ \sigma_{K^- p} &= \lambda_{Kp} (A + B \cdot \ln \, s + C \cdot \ln^2 \, s) + Y_1^{Kp} s^{-\eta_1} - Y_2^{Kp} s^{-\eta_2}, \\ \sigma_{\gamma p} &= \lambda_{\gamma p} (A + B \cdot \ln \, s + C \cdot \ln^2 \, s) + Y_1^{\gamma p} s^{-\eta_1}, \\ \sigma_{\gamma \gamma} &= \lambda_{\gamma \gamma} (A + B \cdot \ln \, s + C \cdot \ln^2 \, s) + Y_1^{\gamma p} s^{-\eta_1}, \\ \sigma_{\Sigma^- p} &= \lambda_{\Sigma p} (A + B \cdot \ln \, s + C \cdot \ln^2 \, s) + Y_1^{\Sigma p} s^{-\eta_1} - Y_2^{\Sigma p} s^{-\eta_2}. \end{split}$$

Variable s is in the units $[GeV^2]$. The additional scale $s_1 = 1$ $[GeV^2]$ in terms with $(s/s_1)^{-\eta_{1,2}}$ is omitted for brevity.

Adjustable parameters naming. In total 20 parameters used:

$$\eta_1, \eta_2, \lambda_{\pi p}, \lambda_{K p}, \lambda_{\Sigma p}, \lambda_{\gamma p}, \lambda_{\gamma \gamma}$$
 – dimensionless

$$(A,B,C,Y_{1,2}^{pp},Y_{1,2}^{\pi p},Y_{1,2}^{Kp},Y_{1,2}^{\Sigma p},Y_{1,2}^{\gamma p},Y_{1}^{\gamma p},Y_{1}^{\gamma \gamma}) = [{
m mb}]^{-1}$$

Scan-fits summary. 2000 database. Without cosmic data points.

$m{E}_{ m cm}^{ m min}~[{ m GeV}]$	3	4	5	6	7	8	9	10
N_{dof} : $ ho$ excluded	706	561	487	414	349	311	265	210
N_{dof} : $ ho$ included	884	722	628	549	478	433	377	309
$\chi^2/{ m dof}: ho$ excluded	1.30	0.96	0.82	0.80	0.85	0.85	0.85	0.82
$\chi^2/{ m dof}: ho$ included	1.61	1.10	0.97	0.97	0.998	0.95	0.93	0.93

Details of the fit to the data in the whole domain of applicability

			χ^2/dof	=	0.97
	\sqrt{s} of the	Number	CL[%]	=	69.72
	starting point	of data	Name of	Numerical	Error
	in $[GeV]$	points	value	value	value
Breakd	own of the CS d	ata sample	η_1	0.20020869	0.010536634
<i>pp</i> :	5.00963	112	η_2	0.54334494	0.0064091006
$\overline{D}D$:	5.1569	59	$\lambda_{\pi p}$	0.68816667	0.0062681718
$\pi^+ p$:	5.21275	50	λ_{Kp}	0.65072174	0.010242795
$\pi^- n$	5.02954	106	$\lambda_{\Sigma p}$	1.0644665	0.058302433
$K^+ n$	5.12707	40	$\lambda_{\gamma p}$	0.0035982407	0.000059308528
K^-n	5 10875	63	$\lambda_{\gamma\gamma}$	9.434353E-06	5.4339892E-07
$\sum^{n} p$	6 12189	9	B	7.5860589	0.83911335
γn^{\cdot}	5 01008	38	A	-38.50015	8.5802622
$\gamma \mathbf{p}$	5	30	C	-0.02800196	0.025777808
77. Break	down of the o de	ta sample	Y_{pp1}	113.76647	8.0642168
Dicak	$r_{p} = r_{p} = r_{p}$		Y_{pp2}	33.168757	0.9704665
pp:	5.30542	(4	$Y_{\pi p1}$	66.769441	6.1105925
pp:	11.5382		$Y_{\pi p2}$	5.7639493	0.16248065
$\pi^+ p$:	8.98072	8	Y_{Kn1}	55.18892	6.1761696
$\pi^- p$:	7.56285	30	$Y_{K_{n2}}$	13.365214	0.38183928
K^+p :	5.21771	10	$Y_{\gamma n1}$	0.32421008	0.033242904
K^-p :	5.23565	8	$Y_{\gamma\gamma1}$	0.00089545109	0.000086567891
			$Y_{\Sigma_{n1}}$	92.433612	11.013198
			$Y_{\Sigma p2}^{-\Sigma p1}$	8.1833441	21.692103

Model quality indicators:

	A^M	C_1^M	C_2^M	U^M	R_1^M	R_2^M	S_1^M	S_2^M
RR(PL2)(20)	1.595	69.72	82.05	17.05	30.86	0.616	0.013	1.295

Repository:

computer - NPT1

directory - d:\MathemD\Kolja\Evela\Gauron\(RR)(PL2)(20)

Appendix RR(PL2)(20) (N $^{\circ}34$) χ^2 /NoP by data samples

						\mathbf{CS}	dat	a						
Reaction	pp	$ar{p}p$	π^+	$p \mid \tau$	$\tau^- p$		^+p	K	[-p]	Σ	^{-}p	γl	0	$\gamma\gamma$
χ^2/NoP	0.87	0.98	8 0.9	5 (0.82	0.	74	0	.64	0	.41	0.7	2	0.53
[ρ	data	a						
	React	ion	pp	$ \bar{p}p$	π	^+p	π^{-}	p	K^+	p	K^{-}	\overline{p}		
	χ^2/N	loP	1.56	0.4	7 1.	.83	1.4	7	1.3	3	1.	2		

Figure 32: Pomeron contribution for pp [mb] (Axis X - s [GeV²])

	η_1	η_2	$\lambda_{\pi p}$	λ_{Kp}	$\lambda_{\Sigma p}$	$\lambda_{\gamma p}$	$\boldsymbol{\lambda}_{\gamma\gamma}$	B	${f A}$	С	Y_{pp1}	Y_{pp2}	$Y_{\pi p1}$	$Y_{\pi p2}$	Y_{Kp1}	Y_{Kp2}	$Y_{\Sigma p1}$	$Y_{\Sigma p2}$	$Y_{\gamma p1}$	$Y_{\gamma\gamma1}$
η_1	100	31.2	-93	-97.1	-14	-75.2	-14.4	-86.9	94.6	70.1	-92	33.2	-93.4	26.8	-94.3	27.7	-93.9	-91.2	-88.6	-9.05
η_2	31.2	100	-12.1	-22.3	-3.87	-14.9	-3.02	-24.2	26.7	19.4	-24.1	97.5	-24.9	88.5	-25.5	94.6	-25.2	-24.5	-23.3	-1.84
$\lambda_{\pi p}$	-93	-12.1	100	94.8	13.1	74.6	14.1	83.3	-90.2	-67.2	88.9	-12.7	90.1	-8.91	90.6	-9.38	90.3	87.8	85.4	9.26
λ_{Kp}	-97.1	-22.3	94.8	100	13.7	75.4	14.4	84.7	-92.4	-67.8	90.3	-23.5	91.6	-18.7	92.4	-18.6	92	89.4	87	9.16
$\lambda_{\Sigma p}$	-14	-3.87	13.1	13.7	100	10.5	2.12	10.7	-12.3	-8.02	11.7	-4.16	12	-3.48	12.2	-3.45	12.1	11.7	-18.1	-85.2
$\lambda_{\gamma p}$	-75.2	-14.9	74.6	75.4	10.5	100	11.2	66.8	-72.4	-54	71.1	-15.7	72	-12.2	72.5	-12.5	73	70.3	68.3	7.27
$\lambda_{\gamma\gamma}$	-14.4	-3.02	14.1	14.4	2.12	11.2	100	12.3	-13.5	-9.76	13.1	-3.22	13.3	-2.57	13.5	-2.58	13.4	10.6	12.7	1.3
B	-86.9	-24.2	83.3	84.7	10.7	66.8	12.3	100	-98.2	-95.9	99.1	-25.6	98.6	-18.7	98.2	-20.7	98.4	96.1	92.4	9
A	94.6	26.7	-90.2	-92.4	-12.3	-72.4	-13.5	-98.2	100	88.9	-99.7	28.2	-99.9	21.5	-100	23	-99.9	-97.4	-94	-9.4
C	70.1	19.4	-67.2	-67.8	-8.02	-54	-9.76	-95.9	88.9	100	-91.4	20.7	-89.9	14.1	-88.9	16.3	-89.4	-87.5	-83.6	-7.63
Y_{pp1}	-92	-24.1	88.9	90.3	11.7	71.1	13.1	99.1	-99.7	-91.4	100	-25.4	99.9	-18.9	99.8	-20.6	99.9	97.4	93.9	9.41
Y_{pp2}	33.2	97.5	-12.7	-23.5	-4.16	-15.7	-3.22	-25.6	28.2	20.7	-25.4	100	-26.3	86.4	-26.9	92.2	-26.7	-25.9	-24.6	-1.85
$Y_{\pi p1}$	-93.4	-24.9	90.1	91.6	12	72	13.3	98.6	-99.9	-89.9	99.9	-26.3	100	-19.8	100	-21.4	100	97.5	94.1	9.45
$Y_{\pi p2}$	26.8	88.5	-8.91	-18.7	-3.48	-12.2	-2.57	-18.7	21.5	14.1	-18.9	86.4	-19.8	100	-20.4	83.7	-20.1	-19.5	-18.5	-1.38
Y_{Kp1}	-94.3	-25.5	90.6	92.4	12.2	72.5	13.5	98.2	-100	-88.9	99.8	-26.9	100	-20.4	100	-21.9	100	97.5	94.1	9.46
Y_{Kp2}	27.7	94.6	-9.38	-18.6	-3.45	-12.5	-2.58	-20.7	23	16.3	-20.6	92.2	-21.4	83.7	-21.9	100	-21.7	-21	-19.9	-1.51
$Y_{\Sigma p1}$	-93.9	-25.2	90.3	92	12.1	73	13.4	98.4	-99.9	-89.4	99.9	-26.7	100	-20.1	100	-21.7	100	97.5	94.1	9.46
$Y_{\Sigma p2}$	-91.2	-24.5	87.8	89.4	11.7	70.3	10.6	96.1	-97.4	-87.5	97.4	-25.9	97.5	-19.5	97.5	-21	97.5	100	91.7	9.21
$Y_{\gamma p1}$	-88.6	-23.3	85.4	87	-18.1	68.3	12.7	92.4	-94	-83.6	93.9	-24.6	94.1	-18.5	94.1	-19.9	94.1	91.7	100	42.6
$Y_{\gamma\gamma^1}$	-9.05	-1.84	9.26	9.16	-85.2	7.27	1.3	6	-9.4	-7.63	9.41	-1.85	9.45	-1.38	9.46	-1.51	9.46	9.21	42.6	100

Correlation matrix

 $\mathrm{RR}(\mathrm{PL2})(20)~(\mathrm{N}^{\circ}34)$

Appendix

Figure 33: Bold (empty) symbol marks fits with (without) ρ data and are shifted to the right (left) in energy slightly for the cleareness

