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Chapter 1

Introduction

The strong interaction between two nucleons is the basic ingredient of nuclear physics.
Since about 1980 there have been many efforts to derive the nuclear force from the under-
lying theory of strong interactions, the quantum chromodynamics (QCD). However the basic
equations of QCD are known for their difficulties to obtain a comprehensive solution at all
energies. Indeed, the QCD is often split into two parts : the high-energy and the low-energy
regimes. In the high-energy region, where the coupling constant of QCD becomes very small,
leading to the asymptotic freedom, a perturbative treatment is applicable, allowing for a
satisfactory description of many experimental data, such as the deep inelastic lepton-hadron
scattering. On the other hand, due to its non-perturbative character in the low energy regime,
as for example the nucleon or the nucleon-nucleon interaction, QCD cannot be solved exactly.
Moreover, in this energy region new characteristics of QCD become important such as the
confinement of quarks and gluons and the spontaneous breaking of chiral symmetry. This
renders difficult the treatment of QCD using its own degrees of freedom. A first hope could
come from lattice calculations. However, certainly more computer power and more deve-
lopment of sophisticated algorithms are still necessary. Consequently, several so-called QCD
inspired models have been used to study the nucleon properties and to derive the nucleon-
nucleon interaction, where the original degrees of freedom of QCD are replaced by effective
degrees of freedom.

Among all the available models, in this thesis we are concerned with a particular cons-
tituent quark model. Our choice goes to a new potential model : the Goldstone boson ex-
change (GBE) or the chiral constituent quark model, where the interaction between quarks
is due to a pseudoscalar meson exchange (Goldstone boson). This model incorporates the
chiral symmetry breaking effect of QCD, the importance of which becomes more and more
clear to nuclear physicists.
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2 Introduction

The GBE model reproduces well the baryon properties and it is interesting to find out
if the nucleon-nucleon problem, as a system of six quarks, can be described as successfully.
A strong motivation of using this model is that it contains all necessary ingredients for des-
cribing the nucleon-nucleon interaction. Its hyperfine interaction, which is flavor and spin
dependent, besides a short-range part, essential for baryon spectroscopy, also contains a long-
range part of Yukawa type, which is necessary to describe the long-range behaviour of the
nucleon-nucleon interaction. This allows a fully consistent description of the nucleon-nucleon
interaction and avoids the extra addition of meson exchange at the nucleon level, as imposed
in the one-gluon exchange models, or of meson exchange between quarks, overlapped on the
gluon exchange, like in the so-called hybrid models.

Within the GBE model, besides one-meson exchanges, one can naturally include two or
more pseudoscalar meson exchanges. The incorporation of two-meson exchanges which gives
rise to a spin independent central component, simulated by a σ-meson exchange, could in
principle explain the middle-range attraction of the nuclear forces. Apart from that, together
with the one-pion exchange, two correlated pions bring a contribution to the tensor part of the
quark-quark interaction, required to explain the binding of the deuteron and the behaviour
of the 3S1 phase shift.

The best known way to study the nucleon-nucleon (NN) interaction as the interaction
between two composite particles is via the resonating group method (RGM), or the closely
related, the generator coordinate method (CGM). Here we chose the RGM to treat the
nucleon-nucleon problem as a system of six interacting quarks. An important feature of this
method is that the exchange of quarks between nucleons can be treated exactly. This leads
to important non-local effects in the NN potential and allows the study of both bound and
scattering states of the NN system.

This thesis is divided in six chapters and six appendices. The work presented here begins
with a short historical overview of the nucleon-nucleon interaction studies. The review pre-
sented in Chapter 2 starts from the approach beginning with Yukawas’s theory in the thirties
and ends with the most modern considerations where quark structure and chiral symmetry
are taken into account. In particular we shortly introduce the three best known potential
models : the one-gluon exchange model (OGE), the hybrid model and the GBE model. To
our knowledge, our work is the first study of the NN interaction within the GBE model and
based on RGM.

Chapter 3 is entirely devoted to the detailed study of the GBE model. The origin and its
foundations are discussed in details. Results and in particular its success in reproducing spec-
tra of light baryons is presented. We also underline how the GBE model provides a promising
basis for further investigations, such as the nucleon-nucleon interaction. We also note that
the long-range part of the quark-quark interaction which does not play an important role
in the baryon spectra, leaves room for more adjustment of the GBE parametrization when
studying the nucleon-nucleon interaction.

The application of the GBE interaction to the study of six-quark systems starts in Chap-
ter 4. Our first goal is to find out if the GBE interaction can explain the short-range repulsion
of a two-nucleon system. That chapter constitutes in fact a first step of our investigation
towards finding out whether or not the GBE model can give rise to a short-range repulsion
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in the nucleon-nucleon interaction. To do so we use the Born-Oppenheimer approximation
and consider two different ways of constructing six-quark states : the cluster model basis
and the molecular orbital basis. We show why the molecular basis is more appropriate to
the derivation of the nucleon-nucleon interaction. Also we show how the details of the GBE
model parametrization does not affect the results qualitatively. Finally, we propose the in-
troduction of a scalar-meson exchange interaction between quarks which can simulate the
missing middle-range attraction.

However the results obtained in Chapter 4 represent only a preliminary study, inasmuch
as we derive only a static local potential. A dynamical treatment of the nucleon-nucleon
interaction is developed in Chapter 5 where we apply the RGM to study the NN interaction.
This method allows us to calculate bound and scattering states of the NN system in taking
into account the compositeness of the nucleon. One of the concerns of Chapter 5 is to find
out the role played by GBE interaction and the quark interchange due to the antisymmetriza-
tion, on the short-range NN interaction. In that chapter we first present the resonating group
method in the context of the NN problem. Next we apply it to the study of the relative s-
wave scattering of two nucleons. The influence of the coupled channels NN − ∆∆ − CC in
RGM calculations is presented. Then, searching for an agreement of the 1S0 phase shift with
experimental data, we propose to explicitly include a σ-meson exchange which can provide
an important amount of middle-range attraction. In order to reproduce the experimental
data for the 3S1 phase shift, we have to introduce the tensor part of hyperfine interaction
potential which can provide the binding of the two nucleons.

Our concluding remarks are gathered together in the last chapter. Many of the analytical
details related to Chapter 5 are given in the Appendices A-F.





Chapter 2

Microscopic Description of the

Nucleon-Nucleon Interaction

2.1 Historical overview

The nucleon-nucleon (NN) interaction is one of the most important key issues in nuclear
physics. That is why so much effort has been devoted to the study of this interaction. Already
in the thirties, Yukawa postulated the existence of a new particle, called later the pion, which
explained the basic force between two nucleons. If this simple model was very good for a
long-range interaction, of the order of two fermis, more complicated approaches were needed
to reproduce the shorter range interaction. Knowing that the one-pion exchange potential
(OPEP) plays the dominant role in the long-range region, there are however some ambigui-
ties in the medium- and short-range parts of the potential. The nucleon-nucleon scattering
data suggest a strong repulsive interaction at short-range as seen from the high-energy region
Elab ≥ 250 MeV in NN scattering experiments. Accordingly, phenomenological potentials
with a repulsive core have been introduced, see for example Reid [98]. Later on, in the spirit
of meson theory, besides the pion exchange, one had included two-pion exchanges for the
intermediate region (between one and two fermis) as well as vector mesons exchanges, for
example the isoscalar ω and the isovector ρ meson, which are responsible for the short-range
repulsion. This approach led to the more sophisticated potentials, like the Paris [69] or the
Bonn [73] potential, which are able to describe the nucleon-nucleon scattering in a pretty
good way. However in the new high-precision potentials as for example the Nijmegen poten-
tial [123], in order to get a χ2/datum close to 1, tens of parameters (about 45) were needed.
If these potentials are employed or have been employed with success as a basic ingredient in
the study of nuclear many-body problems, this amount of parameters clearly indicates the
presence of some lack of knowledge.

5



6 Microscopic Description of the Nucleon-Nucleon Interaction

Moreover it is well known today that the nucleon itself has a finite size and an internal
structure. The nucleon structure has been usually taken into account in terms of a nucleon
form factor when electromagnetic and weak properties of the nucleon were discussed. In
the nucleon-nucleon problem, the finite-size effect should also be taken into account. This
has been achieved by introducing a form factor for the meson-nucleon vertex. Again, this
form factor is phenomenological and has been adapted by comparison with the experiment.
The current status of phenomenological or semi-phenomenological models can be found for
example in Ref. [74].

Since about 1980, a second line of approach, at a more fundamental level, has been de-
veloped and this is the line we adopt here. This is because it is currently believed that
quantum chromodynamics (QCD) is the fundamental theory of the strong interaction, where
coloured quark fields interact with coloured gluon fields through a local gauge-invariant cou-
pling [25]. Indeed the interaction range of the ω meson is about 0.2 fm which means that the
nucleon internal structure has a crucial role in the short-range interaction because the root
mean square radius of the proton is about 0.8 fm indicating the overlap of both nucleons.
In this context the nucleon is then considered as a composite system of quarks and gluons
described by QCD. Recent research of the NN interaction has been conducted on this more
basic level. But the problem with QCD is that it is quite impossible to apply it directly
to a nuclear problem such as the baryon-baryon interaction. That is why many quark mo-
dels inspired by QCD have been used in trying to describe the nucleon itself as well as the
more complicated problem of the nucleon-nucleon interaction or even other nuclear problems.

Three of the most important characteristics of QCD are clearly the colour confinement,
the asymptotic freedom and the chiral symmetry. That is the basis of many well known
models to describe the internal structure of hadrons. There are relativistic models such as
the MIT bag model [24] or the soliton bag model of Friedberg and Lee [36]. In the MIT bag
model, one postulates an infinitely sharp transition at the bag radius R. Inside the bag the
quarks interact weakly. Outside there is no quark, it is the true QCD vacuum. This confin-
ing boundary condition breaks the chiral symmetry. It is the same in the Friedberg and Lee
model where the confinement is realized by introducing a scalar field coupled to quarks. This
scalar field is supposed to simulate all non-perturbative effects of QCD. In order to restore
chiral symmetry other models such as the chiral bag [17] and the cloudy bag [127] have been
proposed. The conservation of the axial current is then ensured by the introduction of new
fields. On the other hand there are non-relativistic or semi-relativistic (see later) models
based on potentials [57]. In these models an important difference with respect to relativistic
models comes from the phenomenology used to introduce the quark confinement [5]. In the
bag models, confinement is introduced at the bag surface by imposing boundary conditions or
introducing additional fields. In the potential models the confinement is described in terms
of interactions between quarks. In all these models we then have a hadron constructed from
confined quarks interacting between themselves via a hyperfine interaction. Presently the
hyperfine interaction is either due to one-gluon exchange (OGE, see Section 2.2) or to meson
exchange (GBE, see Section 2.4) or to a mixture of them (hybrid model, see Section 2.3).
Note however that models containing only meson fields to describe baryons, like the Skyrme
model, have also been proposed [113, 141].

Many hadron properties have been described with success by such models. It was then
natural to extend the studies to the nucleon-nucleon interaction and the hadron in general,
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within quark models. The first attempts from Liberman [70] (potential model) and DeTar [30]
(bag model) did not really succeed. They obtained a soft core. This is today understood be-
cause they both used an adiabatic approximation and neglected important symmetry states.
Harvey [53] performed a calculation of the Liberman type but with a more realistic Hamil-
tonian and including the missing symmetry states. He showed that indeed, both the mixing
of ∆∆ and a hidden colour states into the two-nucleon wave function or alternatively some
states of higher spatial symmetry had dramatic effects. In other words this means that before
Harvey only the state of spatial symmetry [6]O was used. Harvey proved the importance of
the [42]O state in the nucleon-nucleon wave function describing the L = 0 relative motion.

Based on a constituent quark one-gluon exchange model, and still in an adiabatic ap-
proach, Maltman and Isgur [75] were later able to describe reasonably well some properties
of the nucleon-nucleon system as e. g. the middle-range attraction. However their work
remains nowadays under controversy [87]. Moreover, the long-range part of the nucleon-
nucleon potential was described by the pion exchange at the level of the nucleon itself. This
picture implies that something is not understood. The origin of this assumption is however
very clear now : for such a range we are in a small momentum transfer region where the
perturbative approach of QCD does not work. Maltman and Isgur, as well as others, avoid
the problem simply by neglecting what happens at large distances at the quark level and add
meson exchange at the nucleon level. We shall see in the following how these drawbacks have
been removed.

Actually in the nucleon-nucleon studies based on quark models there are three major
steps : 1) the choice of the quark-quark interaction such as to properly describe the nucleon
spectrum, 2) the truncation of the Hilbert space, as discussed above, which means the choice
of the most important six quark states used in diagonalizing the Hamiltonian and 3) the
treatment of the six-quark system itself, as a many body problem.

So far we have presented studies based on a static treatment of the six-quark system,
namely the adiabatic approximation (or the Born-Oppenheimer approximation). This is a
well known approximation where one defines a separation distance between two composite
clusters and calculates the interaction potential by assuming that the internal degrees of free-
dom are frozen. Note that if this separation distance is identified with the relative coordinate
between the two clusters one obtains the Born-Oppenheimer approximation.

It is in the beginning of the eighties, with the works of Oka, Yazaki et al. [87] in the
framework of the resonating group methods (RGM) and of Harvey et al. [54] based on the
generator coordinate method (GCM) that a dynamical treatment of the nucleon-nucleon in-
teraction has been considered. These methods first introduced by Wheeler in 1937 [138]
are appropriate to treat the interaction between two composite systems and have been first
applied to the α − α scattering1. They allow to calculate both scattering and bound states.
Restricting to quark degrees of freedom and non-relativistic kinematics, the resonating group
method can straightforwardly be applied to the study of the baryon-baryon interaction in the
quark model. The phase shifts calculated by Oka and Yazaki, for the first time, demonstrated
the existence of a short-range repulsion in the nucleon-nucleon potential as due to the one

1See the review of microscopic methods for the interaction between complex nuclei in the works of Saito
[104], Horiuchi [56] and Kamimura [60]. In particular the generator coordinate method and the resonating
group method are explained in details.



8 Microscopic Description of the Nucleon-Nucleon Interaction

gluon exchange hyperfine quark-quark interaction. Another important issue is the introduc-
tion of non-local effects in the potential.

But let us return to step 1 : the model itself. Nowadays, there are three kinds of con-
stituent quark models based on a quark-quark interaction potential. The oldest ones are
based on the exchange of one gluon between quarks. These models are called one-gluon
exchange model or OGE Models. These models do not take into account the chiral aspect
of QCD and in particular the spontaneous breaking of chiral symmetry. Therefore, in the
nucleon-nucleon problem, they are unable to describe the middle- and long-range interac-
tion. In order to avoid this last difficulty, one can include a pion exchange interaction at the
quark level in addition to the OGE interaction. This approach is at the basis of the so-called
Hybrid Model. Recently Glozman and Riska [42] proposed a model where they dropped the
gluon exchange hyperfine interaction leaving in the Hamiltonian only a pseudoscalar meson
exchange. The main argument in doing so is that at the energy considered here (of the
order of 1 GeV) the fundamental degrees of freedom of QCD, gluons and current quarks,
have to be replaced by effective degrees of freedom such as the so-called Goldstone bosons
(pseudoscalar mesons) and constituent quarks, due to the spontaneous breaking of chiral
symmetry (see Section 3.2). In this sense for light hadrons, there is no need of quark-gluon
interaction anymore. Moreover the long-range NN problem is resolved automatically because
of the presence of these Goldstone bosons. Such models are called Goldstone boson exchange
models or GBE Models. More details on these three models will be presented in the following.

Moreover, in quark models one has used either a non-relativistic or a relativistic kine-
matic. But considering the size of baryons, which is about 0.5 - 1.0 fm, it seems that the
non-relativistic treatment can hardly be justified because it leads to velocities of the order of
v ∼ c. Surprisingly, in the framework of non-relativistic models, the agreement with expe-
riment was good for many observables. However semi-relativistic approaches have also been

proposed. This means that in the potential model, the kinetic term p2

2m +m2 is replaced by
√

p2 +m2. If for some observables this description is of crucial importance, the treatment
of the relative motion of two baryons being essentially non-relativistic in the energy range
where data are well established, the study of nucleon-nucleon interaction in a non-relativistic
approach should be the first task to achieve.

Non-relativistic models are all based on a Hamiltonian formed of a kinetic term and a
confinement potential on the one hand, and a hyperfine spin-dependent term describing a
short-range quark-quark interaction inside hadrons on the other hand. In other terms, the
Hamiltonian is generically written as

H = T + VConf + VHyp (2.1)

where the kinetic term is obviously defined by

T =
N
∑

i

mi +
N
∑

i

p2
i

2mi
−KG (2.2)

where N is the number of quarks in the system, three for baryons, six for the nucleon-nucleon
system and so on, mi are the quark masses, pi their momenta and KG is the kinetic energy
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of the center of mass. The confinement two-body term contains a colour operator and has
the form

VConf =
N
∑

i<j

VConf (rij) =
N
∑

i<j

(

−3

8
λc

iλ
c
j

)

Vconf (rij) (2.3)

where λc are the colour SUC(3) generators. This form of confinement is mainly inspired by
lattice QCD where the quark-quark interaction responsible for confinement comes from the
chromoelectric part of the gluon field and simulates the non-linear aspects of QCD. However
QCD lattice calculations lead to rather contradictory results. Some [125] give support to the
Y-type flux tube picture i. e. a genuine three-body force, while others [3] favor the ∆ ansatz
i. e. a pair-wise interaction as in Eq. (2.3). In the following we shall use Eq. (2.3) with

Vconf (r) = V0 + Cr. (2.4)

where V0 is a global constant introduced to adjust the position of the entire spectrum.

The last term of Eq. (2.1), VHyp defines the model used in hadron spectroscopy. In this
thesis we shall use the GBE model with its hyperfine interaction potential. However to really
understand the advantages (and the disadvantages) of this model, in the following three sec-
tions we shall give a brief review of the three nowadays versions of constituent quark models
mentioned above.

2.2 The OGE Model

In this section we present the hyperfine interaction potential introduced in Eq. (2.1) for
the one-gluon exchange model. This model is based on the idea that at short-range perturba-
tive QCD theory can be applied, which implies gluon exchange between quarks in the lowest
order. The validity of the perturbative method depends on the value of the strong interaction
coupling constant αs. In these potential models the value of αs is generally greater than one,
which indicates a contradiction with perturbative QCD. Good agreement with experiment is
however obtained for hadron spectra [57].

In the case of a system of quarks where the interaction is of a gluon exchange nature,
the hyperfine interaction is similar to that of quantum electrodynamics (QED) for photon
exchange (the Breit-Fermi interaction)

V OGE
Hyp =

N
∑

i<j

Vhyp(rij) =
N
∑

i<j

(αeqiqj + αs

∑

c

λc
i

2

λc
j

2
) Sij (2.5)

where αe and αs are the QED and QCD coupling constants respectively. The charge of the
quark i is given by qi. But in the following we shall neglect the electromagnetic contribution
because αe << αs. The form of the Sij operator given by de Rùjula et al. [102] is

Sij = S0
ij + SSS

ij + ST
ij + SSO

ij (2.6)
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with

S0
ij =

1

rij
− 1

2mimj
(
~pi · ~pj

rij
− (~rij · ~pi)(~rij · ~pj)

r3ij
) − π

2
(

1

m2
i

+
1

m2
j

)δ3(~rij), (2.7)

SSS
ij = −π8~Si · ~Sj

3mimj
δ3(~rij), (2.8)

ST
ij = −3(~Si · ~rij)(~Sj · ~rij)

mimjr5ij
) +

~Si · ~Sj

mimjr3ij
(2.9)

and

SSO
ij =

1

r3ij

[

1

2m2
i

(~rij × ~pi) · ~Si −
1

2m2
j

(~rij × ~pj) · ~Sj

+
1

mimj

(

(~rij × ~pi) · ~Sj − (~rij × ~pj) · ~Si

)

]

. (2.10)

In this model there are three different kinds of terms : a spin-spin term SSS
ij proportional

to a delta-function, therefore operating only on quark pairs with zero angular momentum, a
tensor term ST

ij contributing only for non-zero angular momenta and a spin-orbit term V SO
ij .

The Coulomb type term in S0
ij, proportional to r−1, is often integrated in the confinement

potential and SSO
ij as well as ST

ij terms are usually neglected due to their small contribution
to baryon spectra.

Thus in practical applications the hyperfine interaction reduces to its spin-spin part.
However in order to test the role of the tensor term, Isgur and Karl [57] for example, took it
in the form

V OGE
Hyp ≃

N
∑

i<j

αs

{

SSS
ij + ST

ij

}

∑

c

λc
i

2

λc
j

2
(2.11)

The characteristic feature of the operator of Eq. (2.11) is the presence of both colour
and spin operators. The presence of these operators is believed to explain the hadron spec-
troscopy and the short-range part of the nucleon-nucleon interaction.

But the first and most important drawback of this model is its difficulty to reproduce
the correct order of the lowest part of the nucleon and ∆ spectra and in particular the posi-
tion of the Roper resonance relative to the first negative-parity states. In the baryon-baryon
problem, the difficulties come from the absence of meson exchange which are not included in
the Hamiltonian (2.5). The latter point is the origin of the hybrid models but it is with the
proposal of Goldstone boson exchange type models that a correct ordering in both strange
and non-strange baryons has been achieved.
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2.3 The Hybrid Model

The second category of models used in the study of the nucleon-nucleon interaction, but
less extensively in hadron spectroscopy, contains those models where in addition to one-gluon
exchange, quarks interact also via a pseudoscalar and a scalar meson exchange. In these
hybrid models the short-range repulsion of the nucleon-nucleon interaction is still attributed
to one-gluon exchange but the middle- and long-range attraction is due to meson exchanges
between quarks. The hyperfine part of the Hamiltonian (2.1) associated to these models has
a supplementary term coming from pion exchange and σ-meson exchange

V hybrid
Hyp = V OGE

Hyp + V OPE
Hyp + V σ

Hyp. (2.12)

The OPE stands for one-pion exchange and is written as

V OPE
Hyp =

N
∑

i<j

V OPE
Hyp (rij) ≃

∑

i<j

απ~τi · ~τj SOPE
ij (2.13)

where απ is the pion-quark coupling constant, SOPE
ij is given this time by a form associated

to the pseudoscalar mesons. The detailed forms of SOPE
ij and V σ

Hyp can be found in [68].

2.4 The GBE Model

More recently, a third category of models was proposed where the quark-quark interaction,
besides confinement, is due entirely to meson exchanges between quarks. This is the chiral
constituent quark model (or Goldstone boson exchange model) proposed by Glozman and
Riska in Ref. [42]. If a quark-pseudoscalar meson coupling is assumed, in a non-relativistic
limit, one obtains a quark-meson vertex proportional to ~σ · ~q λf with ~σ the Pauli matrices,
~q the momentum of the meson and λf the Gell-Mann flavour matrices. This generates a
pseudoscalar meson exchange interaction between quarks which is spin and flavour dependent.
Its schematic form, used in Section 3.3 of the next chapter, is

V GBE
Hyp = −

∑

i<j

v(rij)~λ
f
i
~λf

j ~σi · ~σj (2.14)

where v(rij) is a radial form, independent of f in the SU(3) invariant limit. The explicit
form, proposed initially by Glozman, Papp and Plessas [43] for the spin-spin part of the GBE
interaction, is

V GBE
Hyp (rij) =







3
∑

f=1

Vπ(rij)λ
f
i λ

f
j

+
7
∑

f=4

VK(rij)λ
f
i λ

f
j + Vη(rij)λ

8
iλ

8
j + Vη′(rij)λ

0
i λ

0
j







~σi · ~σj , (2.15)
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with

Vγ(~rij) =
g2
γ

4π

1

3

1

4mimj
{µ2

γ

e−µγrij

rij
− 4π δ(~rij)}, (γ = π,K, η, η′) (2.16)

where µγ are the meson masses and g2
γ/4π are the quark-meson coupling constants. Note that

this form also contains the exchange of η′ mesons. The contact term has to be regularized.
Two non-relativistic versions of this model are available. They differ from each other by the
way the contact term has been regularized. Both versions will be used in our derivation of
the nucleon-nucleon interaction. For this reason the GBE model and in particular its non-
relativistic versions will be described in details in the next chapter. Baryon spectra, form
factors and strong decays will be presented in order to show the reader the performances of
this model.

With Chapter 4 we shall enter the core of the subject, namely the nucleon-nucleon inter-
action. That is the starting part of my personal contribution too. That chapter constitute
a first step in our investigation of finding out whether or not the GBE model can give rise
to a short-range repulsion in the the nucleon-nucleon interaction. We used two different
approaches based on the Born-Oppenheimer approximation and taking into account Har-
vey’s transformations. In Chapter 5 we study the NN interaction in a dynamical way using
the resonating group method (RGM). We present results for the s-wave phase shifts in the
nucleon-nucleon scattering. We also introduce some necessary extensions of the GBE model
like the contribution of the σ-meson exchange interaction between quarks or the tensor force
and discuss the comparison with the OGE results and experiment. In the last chapter, con-
clusions and outlook of this work will be presented. Details of the calculations have been
gathered in appendices.



Chapter 3

The Goldstone Boson Exchange

Model

3.1 Introduction

As it has been mentioned in the previous chapter, one-gluon exchange (OGE) models are
motivated by perturbative QCD. However it is important to note that the justification of
these models relies more on its successes than on its theoretical grounds. Indeed for OGE
the only relevant energy scale is ΛQCD ≈ 200 MeV, the confinement scale. This point of view
ignores the two-scale picture of Manohar and Georgi [76] in which the degrees of freedom
should be the constituent quarks and the chiral meson fields below the chiral scale Λχ ≈ 1
GeV. However, besides this theoretical drawback, OGE models have two other fundamental
shortcomings. The first is the wrong prediction in the ordering of positive- and negative-
parity states of baryons as compared to the experimental data. For example in Fig. 3.1
Capstick and Isgur [20] gave the spectra of the light baryons N and ∆ in a semi-relativistic
version of the one-gluon exchange model compared to the well accepted Breit-Wigner fit of
experimental data. It is here important to note that this fit is not really unique in the sense
that it relies on conventions which are sometimes different from one experimental group to
another. Here we use the Particle Data Group (PDG) values.

In OGE models, the Roper resonance N1440 as well as its equivalent in the ∆ spec-
trum, namely the ∆1600 resonance, are systematically above the negative-parity doublets,
the N1520 −N1535 and the ∆1620 − ∆1700 respectively. It must be stressed that this problem
can not be arranged by any specific parametrization of the interaction. There are two reasons
for that. The first is the type of interaction itself, its dominant part being the spin-spin part
of the Breit-Fermi interaction, given by

13
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V OGE
Hyp ∝ −

∑

i<j

v(rij)~λ
c
i
~λc

j ~σi · ~σj = −
∑

i<j

v(rij)O
OGE
ij (3.1)

where λc are the SUC(3) Gell-Mann matrices and ~σ the SUS(2) Pauli matrices associated
to the spin and v(r) the regularized form of (2.8). If we look at the matrix elements of this
interaction between two quarks with a definite colour-spin symmetry, we have

〈

[f ]C × [f ′]S : [f ′′]CS |Ocm
ij |[f ]C × [f ′]S : [f ′′]CS

〉

=

{

8 [11]C × [11]S : [2]CS ,
−8

3 [11]C × [2]S : [11]CS .
(3.2)
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Figure 3.1: Spectrum of the light baryons in the semi-relativistic version of the Capstick
and Isgur model [20] where the contact term of Eq. (2.8) is smeared with the function

δ(r) ≃ σ3

π3/2 e
−σ2r2

. The value of σ is chosen to be equivalent to 0.1 fm. The dashed shade
boxes give the experimental values in the commonly accepted Breit-Wigner fit. This figure
has been extracted from Ref. [128]

According to (3.2), the immediate consequence is that the V OGE
Hyp contribution to the

∆[111]CS state, proportional to 8, is repulsive, while for the ground state nucleon, propor-
tional to -8, it is attractive. The ∆ is then heavier than N . But the Roper resonance N1440

and N1520 − N1535 doublets have the same [21]CS mixed symmetry as the ground state nu-
cleon which indicates that the contribution of the spin-colour term is the same. Thus, because
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N1440 belongs to N = 2, and the lowest negative-parity states N1520 −N1535 to N = 1, they
should lie about h̄ω under the Roper resonance. Similar arguments can be used for the ∆ case.

A second reason for missing the level order comes from the potential shape of the spin
independent part of the interaction. Høgaasen and Richard [55] showed that if the Laplacian
of a two-body potential V is positive, ∆V > 0, then E(2S) > E(1P ), i. e., the first radial
excitation comes above the first orbital excitation. This is the case for a harmonic oscillator
or a linear confinement potential. As mentioned above, V OGE

Hyp cannot reverse this order, so
that N1440 appears above N1520 −N1535 contrary to the experiment. Several solutions have
been proposed, including the philosophy that a 100 MeV discrepancy on a particular level is
not necessary a dramatic problem [20]. Another solution is the introduction in the potential
of some terms with a negative Laplacian such as a scalar meson-exchange V σ ∝ −e−µr/r.
However, it has been showed [122] that its strength is not sufficient to change the level order
if a regularization term is added. But for V σ ∝ −e−µr/r alone, one can find a strength
for which the order is reversed. Three-body forces have also been proposed as candidates
to affect radial excitations of the nucleon, while producing no effect on states with mixed
symmetry [29]. The introduction of a specific spin-flavour dependence in the potential leads
to an effective potential for negative-parity states which differs from the one governing the
ground state and its radial excitations. This is in fact what occurs in the pseudoscalar meson
exchange model of our interest, introduced first by Glozman and Riska [42] and presented
hereafter. In that model, the level ordering is definitely solved for non-strange and strange
baryons simultaneously. For other considerations on level ordering in baryon spectra see the
review of Richard [99] about few-body problems in hadron spectroscopy and references there.

Another problem associated with the OGE interaction is the presence of large spin-orbit
forces. In actual calculations the spin-orbit term coming from the Breit-Fermi interaction is
simply dropped [58] because this term, given by Eq. (2.10) in the previous chapter, should
give contributions which are not observed experimentally. Practitioners of the OGE models
explained that a spin-orbit force due to the confining interaction cancels part of the spin-orbit
(2.10). However the spin-orbit problem is still not clear in any constituent quark model and
further investigations will be necessary in order to better understand the situation.

In addition, indications against the dominant role of strong gluon exchange interactions
at low energy are provided by QCD lattice calculations of Chu et al. [23], Negele [81] and
Liu et al. [72]. Moreover, the one-pion exchange potential alone between quarks appears
naturally as an iteration of the instanton-induced interaction in the t channel [50].

As already mentioned, in our study of the NN system seen as a six-quark system, we shall
use the GBE model. Its origin is thought to be in the spontaneous breaking of chiral symme-
try [42]. For this reason, in the following section we shall discuss in a more detailed way the
consequence of this concept. Also, in this chapter some hadronic properties obtained in the
framework of the Goldstone boson exchange model (GBE) will be presented. A description
and a more detailed justification of the model is also given. Results on baryon spectra as well
as form factors are analyzed. Decays properties are presented too. The very good agreement
with experiment at the baryon level can be considered as the main motivation of this work
where we apply the GBE model to the study of a baryon-baryon system and in particular to
the nucleon-nucleon interaction.
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3.2 A note on chiral symmetry

In this section we shall present in more details few aspects of chiral symmetry. On a
simple example the spontaneous breaking of this symmetry will be introduced as well as the
consequences it produces.

A chiral symmetric Lagrangian is a Lagrangian where not only the vector current but
also the axial current are conserved under the following global chiral transformation :

Ψ
′
a = e−iγ5~ε·~τ

2 Ψa. (3.3)

Generally this transformation should act in the SUF (3) flavour space but here, for sim-
plicity, we restrict to SUI(2), i. e. we consider the isospin space only. In Eq. (3.3), ~ε is a
three-component vector defining a rotation angle in the isospin space. A Lagrangian with
massless fermions, hence a massless QCD Lagrangian is invariant under this transformation.
However we know that even the lighter quarks have a non-zero current mass (of about 5
MeV). Therefore if we introduce a mass term of the form MΨ̄Ψ in the Lagrangian, the chiral
symmetry is lost. This slight symmetry breaking due to the quark masses is the basis of the
partial conserved axial current hypothesis (PCAC) and we shall see in the next example what
are the important implications of this symmetry breaking.

3.2.1 Example of a chirally symmetric Lagrangian

Let us consider a simple Lagrangian, as introduced by Gell-Mann and Lévy [38]. This
Lagrangian contains a fermionic isodoublet Ψ of zero mass, a scalar field σ and a pseudoscalar
isovector field ~π

L =
i

2
(Ψ̄γµ(∂µΨ) − (∂µΨ̄)γµΨ) + gΨ̄(σ + i~τ · ~πγ5)Ψ

+
1

2
(∂µσ)2 +

1

2
(∂µ~π)2 − C2(σ2 + ~π2 −A)2 (3.4)

where C and A are real and g is the boson-quark coupling constant. Note that the colour
dependence is not written explicitly. This Lagrangian is invariant under the chiral transfor-
mation (3.3).

This can be easily shown by using an infinitesimal chiral transformation, under which the
fields become

Ψ →
(

1 − iεαγ5
τα

2

)

Ψ,

σ → σ − ~π · ~ε,
~π → ~π + σ ~ε. (3.5)
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It turns then out that the vector and axial currents given by

~jµ = Ψ̄γµ~τ

2
Ψ + ~π × (∂µ~π)

~jµ5 = Ψ̄γµγ5
~τ

2
Ψ + σ(∂µ~π) − (∂µσ)~π (3.6)

are conserved.

One can rewrite the chiral rotation Eq. (3.3) in an alternative way [121] as

Ψ
′
a = e−

i
2
(1+γ5)~ε·~τ

2 e
i
2
(1−γ5)~ε·~τ

2 Ψa. (3.7)

i. e. as a product of a right (R) and a left (L) transformation. Due to (3.7) one can say
that the chiral rotation form the SUR(2) × SUL(2) direct product group. This implies that
the Lagrangian (3.4) is invariant under SUR(2) × SUL(2) transformations. It is useful to
introduce such a language because the chiral transformations written as in (3.3) do not form
a group. The reason is that the operators γ5τi (i = 1, 2, 3) do not form a closed Lie algebra.
Actually because of the property γ2

5 = 1 one has

[γ5τi, γ5τj] = iεijkτk (3.8)

i. e. the operator on the right hand side is different from those in the left hand side, so we do
not have a Lie algebra. The situation is however different for the R (and L) transformations.
For example one has

[

1 + γ5

2
τi,

1 + γ5

2
τj

]

= iεijk
1 + γ5

2
τk. (3.9)

This is an SUR(2) algebra with generators 1+γ5

2 ~τi (i = 1, 2, 3). Similarly, the generator

of the SUL(2) algebra are 1−γ5

2 ~τi. In practice one works with the transformation (3.3) but
keeps in mind (3.7).

The symmetry SUL(2)×SUR(2) can be seen explicitly in the Lagrangian (3.4). In partic-
ular σ2 + ~π2 is a chiral invariant term and expresses the fact that the fields σ, πi (i = 1, 2, 3)
have the same mass equal to m =

√

4|A|C2.

3.2.2 Spontaneous breaking of the chiral symmetry

Using again the Lagrangian density (3.4), we can see that if the value of A is positive, the
minimum of the self-interaction potential is not located at (0, 0) but at (< σ >,< ~π >) 6=
(0, 0). However classical solutions may be considered as mean field approximations. Classical
minima may then be understood as the vacuum states of the considered fields. If we get this
minimum back to the origin we shall see that quarks could acquire a mass. Of course in the
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example considered here, this mass is related to the parameters A and C.

Let us first look at the Hamiltonian associated to the bosonic part of the Lagrangian.
This Hamiltonian density gets the form

H =
1

2
(~̇π

2
+ σ̇2) +

1

2
(∇σ)2 +

1

2
(∇~π)2 + C2(σ2 + ~π2 −A2)2. (3.10)

For the ground state of the Hamiltonian (3.10), two situations can occur

• A ≤ 0

In this case the minimum of the potential is obviously located at (σ, ~π) = (0, 0) as seen
on the left part of Fig. 3.2. We can then expand the solutions around this point. The
mesonic fields have the same mass, and the fermionic field have no mass. The symmetry
is here explicit and is known as the Wigner-Weyl mode.

Figure 3.2: Effective potential C2 (σ2 + ~π2 − A2)2 without (A ≤ 0, left) and with (A > 0,
right) spontaneous breaking of symmetry.

• A > 0

Here the potential has an infinity of minima for σ and ~π corresponding to the equation
σ2 + ~π2 = A, called the chiral circle. The situation is illustrated on the right part of
Fig. 3.2. If we choose to keep < ~π >= 0 then < σ >= ±

√
A. Let us choose the positive

square root. Noting that these values represent the mean field in the vacuum state, to
get them at the origin we need to do the following transformation :

~π → ~π

σ → σ− < σ >= σ −
√
A. (3.11)

In this situation the total Lagrangian (3.4) density becomes

L =
i

2
(Ψ̄γµ(∂µΨ) − (∂µΨ̄)γµΨ) + gΨ̄(σ + i~τ · ~πγ5)Ψ −MΨ̄Ψ
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+
1

2
(∂µσ)2 +

1

2
(∂µ~π)2 − 1

2
m2

σσ
2 − 1

2
m2

π~π
2

−C2(σ2 + ~π2)2 − 4
√
AC2σ(σ2 + ~π2) (3.12)

where

M = −g
√
A, (3.13)

m2
π = 0, (3.14)

m2
σ = 8AC2. (3.15)

We then see that the quark field acquires a mass and the masses of the mesonic fields
are not equal anymore. The pion field is still massless but the σ field acquired a mass
mσ. It is because σ and ~π do not have the same mass and fermions have nonzero mass
that we talk about hidden or spontaneously broken symmetry. The massless π boson is
called a Goldstone boson. Finally note that the Lagrangian is still chirally symmetric.
In this case the symmetry is realized in the Nambu-Goldstone (hidden) mode.

3.2.3 PCAC

Now we study the concept of partial conservation of the axial current (PCAC). In order to
understand it we shall introduce a term in the Lagrangian density (3.4) which breaks chiral
symmetry. We take it in the form c σ. The Lagrangian then becomes

L =
i

2
(Ψ̄γµ(∂µΨ) − (∂µΨ̄)γµΨ) + gΨ̄(σ + i~τ · ~πγ5)Ψ

+
1

2
(∂µσ)2 +

1

2
(∂µ~π)2 − C2(σ2 + ~π2 −A)2 + c σ. (3.16)

With this density one finds that the axial current and its four-divergence are given by

~jµ5 = Ψ̄γµγ5
~τ

2
Ψ + σ(∂µ~π) − (∂µσ)~π

∂µ
~jµ5 = −c ~π. (3.17)

Chiral symmetry is then explicitly broken when c 6= 0.

If we look now after the minimum of this new potential, and choosing again < ~π >= 0,
we get the following equation

∂
(

C2(σ2 + ~π2 −A)2 − c σ
)

∂σ

∣

∣

∣

∣

∣

~π=0

= 4C2σ(σ2 −A) − c = 0 (3.18)
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Hence the ground state values of σ satisfies

< σ >2 −A =
c

4C2 < σ >
(3.19)

Introducing a new field σ → σ− < σ > in the Lagrangian density and using A as given
by (3.19) we get

L =
i

2
(Ψ̄γµ(∂µΨ) − (∂µΨ̄)γµΨ) + gΨ̄(σ + i~τ · ~πγ5)Ψ −MΨ̄Ψ

+
1

2
(∂µσ)2 +

1

2
(∂µ~π)2 − 1

2
m2

σσ
2 − 1

2
m2

π~π
2

+C2(σ2 + ~π2)2 + 4C2σ(σ2 + ~π2) < σ > +
c2

16C2 < σ >2
− c < σ > (3.20)

where

M = −g < σ > , (3.21)

m2
π =

c

< σ >
, (3.22)

m2
σ =

c

< σ >
+ 8C2 < σ >2 . (3.23)

We see that the pion and σ field acquire again different masses. Introducing (3.21) and
(3.22) in (3.23) we obtain a relation which links the masses of the three fields

m2
σ = m2

π +
8C2

g2
M2 (3.24)

Using Eq. (3.21) we can eliminate < σ > in (3.22) to get

c = −M
g
m2

π (3.25)

Replacing this expression of c in the divergence (3.17) we have

∂µ
~jµ5 = m2

π

M

g
~π (3.26)

From the matrix element of the weak axial vector current, related to pion decay, one can
obtain

M = gfπ (3.27)

where fπ is the pion decay constant. This lead to

∂µ
~jµ5 = fπm

2
π~π (3.28)
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The above equation is referred to as PCAC. It implies that the axial current is almost
conserved because the pion mass is small. Therefore the nonzero pion mass expresses the
amount of explicit breaking of chiral symmetry. The PCAC relation (3.28) connects the weak
current ~jµ5 and the strong interacting pion field and has important experimental implications.
Its application to physical observables is made through low energy theorems as e. g. the
Goldberger-Treiman relation

fπgπN = mNg
A
πN (3.29)

where gπN is the pion-nucleon coupling constant, mN the nucleon mass and gA
πN the axial

vector coupling constant. The coupling constant of the quark with the pion gπq can be derived
from an analog of the relation (3.29) at the quark level. The pion-quark coupling constant is
a necessary ingredient of the GBE model. We shall extend the Goldberger-Treiman relation
to the pion-quark coupling

fπgπq = mqg
A (3.30)

where gπq is the pion-(constituent)quark coupling constant, mq the q quark mass (q = u, d, s)
and gA the associated axial vector coupling constant. Weinberg has shown [137] that the
constituent quarks have the bare unit axial coupling constant (gA = 1) and no anomalous
magnetic moment. One thus obtains the relation

gπq =
3

5

mq

mN
gπN (3.31)

The factor 3
5 above comes from the spin-isospin matrix element when we consider the

pion-nucleon interaction as the interaction between the pion and 3 constituent quarks. With
g2

πN
4π = 14.2 one has

g2
πq

4π = 0.67.

Finally, it is interesting to note that if A is chosen to be negative in Eq. (3.16), the ground
state is given by (< σ >,< ~π >) = (0, 0) which means that both fields have the same mass.

Let us discuss the meaning of the spontaneous breaking of symmetry. We could assume
that an effective QCD Lagrangian at zero temperature has a form similar to that described
above with A > 0. Since the ground state is not at the center, one of the fields will have
a nonzero value. Usually this is the σ field because it carries the vacuum quantum num-
bers. In quark language, this means that we expect to have a finite scalar quark condensate
< q̄q > 6= 0. In this way, pionic excitations are similar to small rotations of the ground state
in the valley of right part of the Fig. 3.2. Pion mass should then be zero as seen in the
previous example. Excitations in the radial direction correspond to a perturbation of the σ
field and therefore are massive. Note that this does not break any symmetry and we are in
total agreement with the Goldstone mode introduced above.

The importance of the chiral symmetry for strong interactions was realized early [91].
This symmetry, which is almost exact in the light u and d flavour sector is however only
approximate in QCD when strangeness is included because of the large mass of the s quark
(see Table 3.1). Nevertheless even in 3-flavour QCD the current quark masses may, in a first
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approximation, be set to zero (the chiral limit) and their deviation from zero treated as a
perturbation. The small finite masses of the current quark are however very important for
the finite masses of the mesons. In the chiral limit all members of the pseudoscalar octet
would have zero mass and we recover the situation depicted on the right part of the Fig. 3.2.

Indeed vacuum QCD contains < qq̄ > states with a nonzero value as mentioned above.
Shifman et al. [107] gives the approximate following values to the quark condensates

< uū >≈< dd̄ >≈< ss̄ >≈ −(0.25 GeV)3 (3.32)

which show that we are in the presence of spontaneous symmetry breaking of vacuum QCD.
The relation from Gell-Mann-Oakes-Renner [39] relating the pseudoscalar mesons masses to
the quark condensates (3.32) shows how the mesons acquire a mass. For example for pions
we have

< m2
π0 >=

−1

f2
π

(mu < uū > +md < dd̄ >)

< m2
π± >=

−1

f2
π

mu +md

2
(< uū > + < dd̄ >) (3.33)

where fπ is the pion decay constant already introduced and mu ≈ md are the current mass
of the quarks given in Table 3.1. Analog relations also exist for other pseudoscalar mesons.
Another important remark from Table 3.1 is the difference between u and s current mass. In
the following we shall see that this is the basis of the explicit breaking of the SUF (3) flavour
symmetry.

In our work we shall deal with a non-relativistic Hamiltonian were the fundamental cur-
rent quarks of QCD are replaced by the so-called constituent quarks, also called valence
quarks. Table 3.1 also shows the most accepted values of constituent quark masses.

mass (GeV) u d s c b t

current [52] 0.001-0.005 0.003-0.009 0.075-0.170 1.15-1.35 4.0-4.4 160.8-179.4
constituent ∼ 0.330 ∼ 0.330 ∼ 0.500 ∼ 1.2 ∼ 4.2 ∼ 175

Table 3.1: Commonly accepted values of the different flavour for current and constituent
quark masses

We note that the more quarks are heavy, the smaller is the difference between current
and constituent quark masses. Therefore a non-relativistic description of heavy particles
is entirely justified. However non-relativistic models are also used to describe light flavour
baryons, mesons and other composite systems and the results obtained are very close to the
experimental data. One of the reason for this is the possibility to easily extract the center of
mass motion in a non-relativistic model.
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3.3 The GBE model

As already pointed out before, Manohar and Georgi [76] showed that there are two dif-
ferent scales in three flavour QCD. The first one, ΛQCD ≈ 200 MeV characterizes confinement
and then gives more or less the size of a baryon. At the other one, Λχ ≈ 1 GeV the sponta-
neous breaking of chiral symmetry occurs and hence at distances beyond 0.2 fm dynamical
constituent quark masses as well as Goldstone bosons (mesons) appear. The constituent
quarks are particles with internal complex structure and the mesons are the chiral fields.

Now looking at the confirmed states of the nucleon for example, one can split the spec-
trum in a low energy part where states are well separated and without nearby parity partners
and a high energy part with an increasing number of near parity doublets. A natural inter-
pretation of this feature is that the approximate chiral symmetry of QCD is realized in the
hidden Nambu-Goldstone mode at low excitation and in the explicit Wigner-Weyl mode at
high excitation. In an SUF (3) flavour QCD, the spontaneous breaking of chiral symmetry
leads then to the existence of an octet of low mass pseudoscalar mesons. The U(1) anomaly
decouples the η′ SUF (3)-singlet from the original nonet. In line with these considerations one
can conclude that below the chiral symmetry spontaneous breaking scale, a baryon should be
considered as a system of three constituent quarks with an effective quark-quark interaction
that is formed of a central confining part and a chiral part where the interaction between the
constituent quarks is mediated by the octet of pseudoscalar mesons.

The simplest representation of the most important component of the chiral interaction in
the SUF (3) invariant limit is

Vχ ∝ −
∑

i<j

v(rij)~λ
f
i
~λf

j ~σi · ~σj = −
∑

i<j

v(rij)O
χ
ij (3.34)

where λf
i are the SUF (3) Gell-Mann matrices and v(r) a smeared version of the δ-function

dominating at short range. Note the contrast with Eq. (3.1) which contains λc
i instead of

λf
i . Because of the flavour dependent factor ~λf

i
~λf

j the interaction (3.34) will lead to correct
ordering of the positive- and negative-parity states in the baryon spectra in all strange and
non-strange sectors. By contrast with the OGE model for the nucleon or the ∆, to some
appropriate strength, the chiral interaction between the constituent quarks shifts the lowest
positive-parity state in the N = 2 band below the negative parity states in the N = 1 band.
The question arises then about what happens in the spectrum of the Λ where experimental
values give the first negative-parity state below the N = 2 positive-parity state. Let us ana-
lyze the symmetry structure of the operator Oχ

ij to show that the Λ ordering is reproduced
as well as that of the non-strange baryon spectra.

If we look at the matrix elements of Oχ
ij of Eq. (3.34) between two quarks with a definite

flavour-spin symmetry, we have

〈

[f ]F × [f ′]S : [f ′′]FS |Oχ
ij |[f ]F × [f ′]S : [f ′′]FS

〉

=



















4
3 [2]F × [2]S : [2]FS ,
8 [11]F × [11]S : [2]FS ,
−4 [2]F × [11]S : [11]FS ,
−8

3 [11]F × [2]S : [11]FS .

(3.35)
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Consequently, because v(rij) is positive (smeared δ-function), one finds the two following
important properties : 1) the chiral interaction is attractive in symmetrical flavour-spin pairs
and repulsive in anti-symmetrical ones, and 2) among the flavour-spin symmetrical pairs, the
flavour anti-symmetrical ones experience a much larger attraction than the flavour symme-
trical ones. We find that the states N1440 and ∆1600 which belong to the N = 2 band are
lowered in mass much more than the states N1520 −N1535 and ∆1620 −∆1700 because of their
symmetry structure as shown in Table (3.2). The spacial symmetry of the state is indicated
by the Young pattern [f ]O and the angular momentum by L. The [f ]F , [f ]S and [f ]FS Young
patterns denote the flavour, spin and combined flavour-spin symmetries, respectively. The
totally antisymmetric colour state [111]C , which is common to all the baryon states is sup-
pressed in the notation.

The possibility to reproduce the Λ spectrum is based on the fact that the Λ(1405) −
Λ(1520) is lowered nearly as much as Λ(1600), as seen in Table 3.2 and thus the ordering
implied by a confining interaction of oscillator or linear type is maintained. However this
chiral attraction is generally not enough to reproduce precisely the experimental value of
Λ(1405) − Λ(1520).

Physical states Jπ B(MeV ) L[f ]O[f ]FS[f ]F [f ]S
〈

Oχ
ij

〉

1
2

+
N(939) 0[3]O[3]FS [21]F [21]S -14

1
2
+
N(1440) 0[3]O[3]FS [21]F [21]S -14

1
2

−
N(1535) − 3

2

−
N(1520) 1[21]O [21]FS [21]F [21]S -2

3
2
+
∆(1232) 0[3]O[3]FS [3]F [3]S -4

3
2

+
∆(1600) 0[3]O[3]FS [3]F [3]S -4

1
2

−
∆(1620) − 3

2

−
∆(1700) 1[21]O [21]FS [3]F [21]S 4

1
2
+
Λ(1115) 0[3]O[3]FS [21]F [21]S -14

1
2

−
Λ(1405) − 3

2

−
Λ(1520) 1[21]O [21]FS [111]F [21]S -8

1
2

+
Λ(1600) 0[3]O[3]FS [21]F [21]S -14

Table 3.2: Structure of the lowest states for N , ∆ and Λ. The notation in the first column
is Jπ B with B the considered baryon, J the total angular momentum and π the parity.
Experimental masses are given in brackets. The last column gives the matrix elements of the
Oχ

ij operator for the considered state.

3.3.1 The parametrization of the pseudoscalar exchange interaction

In a simple effective chiral symmetric description of the baryon the coupling of the quarks
and the pseudoscalar Goldstone bosons in an exact SUF (3) symmetry will have the form

L ∼ igΨ̄γ5
~λf · ~φΨ. (3.36)
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where Ψ is the fermion constituent quark field operator, ~φ the octet boson field operator
and g the pseudoscalar boson-fermion coupling constant. A coupling of this form in a non-
relativistic reduction produces a spin- and flavour-dependent interaction potential between
the constituent quarks containing a spin-spin and a tensor part

Vχ(~rij) = ~λf
i · ~λf

j

{

V SS(~rij)~σi · ~σj + V T (~rij)S
T
ij

}

(3.37)

where ST
ij given by Eq. (2.9) is the tensor operator between the quarks i and j. Note in

particular that the GBE interaction to lowest order does not lead to any spin-orbit force, in
contrast to the OGE interaction. But a spin-orbit interaction will appear to second order
(two correlated pions).

Up to now we have considered only exact SUF (3) flavour symmetry. However, in reality
this symmetry is broken. Indeed with the same SUF (3) × SUS(2) symmetry, the lowest
N and Λ states have different experimental energies. In the SUF (3) symmetric limit the
constituent quark masses would be equal (mu = md = ms), the pseudoscalar octet would be
degenerate and the meson-constituent quark coupling constant would be flavour independent.
In a broken SUF (3) symmetry the pseudoscalar fields, i. e. the pion, kaon and η mesons
have a different interaction with the quarks because of the different constituent quark masses
(mu 6= md 6= ms), different meson masses (mπ 6= mK 6= mη) and different meson-quark
coupling constants (gπq 6= gKq 6= gηq). Note however that the very small mass difference
between the u and d quark is neglected in the following. Thus if SUF (3) is broken, the
flavour-dependent part of the potential is then split into

Vχ(~rij) →
3
∑

a=1

λa
i · λa

jVπ(~rij) +
7
∑

a=4

λa
i · λa

jVK(~rij) + λ8
i · λ8

jVη(~rij) + λ0
i · λ0

jVη′(~rij)

(3.38)

where V (~rij) is either the spin-spin part V SS(~rij) or the tensor part V T (~rij) of the inter-
action potential. The last term is the pseudoscalar singlet exchange potential. Goldstone
bosons manifest themselves in the octet of pseudoscalar meson (π,K, η). In the large-NC

limit, when axial anomaly vanishes [140], the spontaneous breaking of chiral symmetry
UL(3) × UR(3) → UV (3) implies a ninth Goldstone boson [26], which corresponds to the
flavour singlet η′. Under real conditions, for NC = 3, a certain contribution from the flavour
singlet remains and the η′ must thus be included in the GBE interaction.

In a non-relativistic reduction the coupling (3.36) will give rise to a Yukawa interaction
between constituent quarks so that the meson exchange potential in Eqs. (3.38) becomes

V SS
γ (~rij) =

g2
γ

4π

1

12mimj

{

µ2
γ

e−µγrij

rij
− 4πδ(~rij)

}

(3.39)

for the spin-spin part and

V T
γ (~rij) =

g2
γ

4π

1

12mimj

{

µ2
γ +

3µγ

rij
+

3

r2ij

}

e−µγrij (3.40)
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for the tensor part, with γ standing for π,K, η and η′. The quark and meson masses are
given by mi and µγ (γ = π,K, η, η′), respectively.

In a chiral constituent quark model, the total Hamiltonian thus consists of the sum of a
kinetic term (2.2), a confinement term (2.3) and the chiral interaction (3.38)

H =
N
∑

i

mi +
N
∑

i

p2
i

2mi
−KG +

N
∑

i<j

−3

8
λc

iλ
c
j Vconf (rij) +

N
∑

i<j

Vχ(~rij) (3.41)

where KG is the center of mass kinetic energy operator.

The chromoelectric confinement interaction is taken in a linear form with a strength
parameter C identified to be the string tension

VConf =
N
∑

i<j

−3

8
λc

iλ
c
j C rij (3.42)

This represents a very good approximation of the regular Y -shape flux tube picture for
the 3-body force with a string configuration. We shall see later that in a semi-relativistic
GBE model there is a confinement strength of the order of C ≈ 2.3 fm−2. We note that
this value appears to be quite realistic, as it is consistent both with Regge trajectories slopes
and also with the string tension extracted in lattice QCD. However because the confinement
mechanism is still very difficult to understand, the choice of this confinement parametriza-
tion is only effective and should be interpreted as a phenomenological potential gathering all
non-linear effect of QCD.

The potentials (3.39) and (3.40) are strictly applicable only for point-like particles. Since
one deals with structured particles of finite extension, namely the constituent quarks and the
pseudoscalar mesons, one must regularize the short-range interaction. In the following we
shall use two different parametrizations detailed in the next subsections.

3.3.2 Model I

Eq. (3.39) contains both the traditional long-range Yukawa potential as well as a δ-
function term. It is the latter that is of crucial importance for baryon physics. But this
form is strictly valid only for point-like particles. It must be smeared out however, as the
constituent quarks and pseudoscalar mesons have a finite size and in addition the boson fields
in a chiral Lagrangian should in fact satisfy a nonlinear equation. In the Model I described in
this section it is assume that 1) tensor force is neglected and 2) at distances r < r0, where r0
can be related to the constituent quark and pseudoscalar meson sizes, there is no chiral boson
exchange interaction as this is the region of perturbative QCD with the original QCD degrees
of freedom. The interactions at these very short distances are supposed not to be essential
for the low energy properties of baryons. Consequently a two parameter representation for
the δ-function term was chosen [43]

4π δ(~rij) →
4√
π
α3e−α2(r−r0)2 . (3.43)
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Following the arguments above one should also cutoff the Yukawa part of the GBE for
r < r0. In order to avoid any cutoff parameter a step function is used at r = r0 so that the
total spin-spin part of the interaction is given by

Vγ(rij) =
g2
γ

4π

1

12mimj

{

µ2
γ

e−µγrij

rij
θ(r − r0) −

4√
π
α3e−α2(r−r0)2

}

(3.44)

mu,d µπ µη µη′

340 139 547 958

Table 3.3: The a priori determined parameters of the GBE Model I and Model II (MeV).

Table 3.3 gathers the physical meson masses and the u and d constituent quark masses
used as parameters in this model. Note that the quark masses are consistent with nucleon
magnetic moments. The pion-quark coupling constant can be extracted from the phenomeno-
logical pion-nucleon coupling as g2

8/4π = 0.67 as seen in Section 3.2.3. For simplicity and
to avoid additional free parameters, the same coupling constant is assumed for the coupling
between the η meson and the constituent quark. This is in the spirit of unbroken SUF (3)
symmetry. However, for the flavour-singlet η′, a different coupling g2

0/4π is taken as the η′

decouples from the pseudoscalar octet due to the UA(1) anomaly. Lacking a phenomenologi-
cal value, g2

0/4π is treated as a free parameter. The three other free parameters are presented
in Table 3.4. They have been adjusted to describe in the best way all the lowest states of the
N and ∆ spectra. In the next section these spectra will be presented.

V0 (MeV) C (fm−2) g2
8/4π g2

0/4π r0 (fm) α (fm−1)

0 0.474 0.67 1.206 0.43 2.91

Table 3.4: Free parameters of the Hamiltonian [43] in Model I.

3.3.3 Model II

The regularization of the short-range interaction in the second version, called Model II,
is related to the property of a vanishing volume integral of the pseudoscalar meson exchange
interaction. In the the Model I this is not the case. However, in a non-relativistic reduction
in momentum space we have V (~q = 0) = 0 which implies that the volume integral (i. e.

the Fourier transform at ~q = 0) of the Goldstone boson exchange interaction in configuration
space should vanish :

∫

d~r V (~r) = 0. In order to design a parametrization that meets this
requirement on makes use of the common Yukawa-type smearing of the δ-function. This leads
to a meson-exchange potential with the spatial dependence

Vγ(rij) =
g2
γ

4π

1

12mimj

{

µ2
γ

e−µγrij

rij
− Λ2

γ

e−Λγrij

rij

}

(3.45)
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involving the cutoff parameters Λγ . If we employ the phenomenological values for the different
meson masses µγ , different cutoff parameter Λγ corresponding to each meson exchange should
also be allowed : with a larger meson mass, Λγ should also increase. In the attempt to keep
the number of free parameters as small as possible, one has to avoid fitting each individual
cutoff parameter Λγ . A linear dependence on the meson mass was then chosen

Λγ = Λ0 + κµγ , (3.46)

which contains only two parameters Λ0 and κ. In order to reproduce the baryon spectra,
the coupling constant g2

8/4π cannot be taken 0.67 as before and has to be adjust as another
free parameter. In fact, in a non-relativistic approach, there is no strict constraint to keep
g2
8/4π equal to 0.67, a value deduced from π−N coupling. Anyway, allowing a value of g2

8/4π
different from 0.67 is certainly justified since in a non-relativistic constituent quark model the
parameters must be considered as effective. However in the semi-relativistic version of the
Model II g2

8/4π = 0.67 will be again recovered [47]. As compared to the previous parametriza-
tion of the quark-quark interaction of Model I, one must also employ an additional constant
V0 different from 0 in the confinement potential in order to make the nucleon ground-state
level match the experimental value. The a priori determined parameters are the same as in
Model I and are presented in Table 3.3. The remaining free parameters of Model II are given
in the Table 3.5 below.

V0 (MeV) C (fm−2) g2
8/4π g2

0/4π Λ0 (fm−1) κ

-112 0.77 1.24 2.77 5.82 1.34

Table 3.5: Free parameters of the Hamiltonian in Model II [44].

3.4 Spectra

In this section we shall present results obtained by the Graz group in different versions of
the GBE model. They used two completely different approaches to calculate the three-quark
bound-state levels. One is to solve the Fadeev 3-body equations, the other is based on a
stochastic variational method. The qq potential VConf + Vχ represents the dynamical input
into the 3-body Hamiltonian. The Faddeev equations were solved along the method of Ref.
[92] designed for an efficient resolve of any 3-body bound-state problem. It has already been
successfully employed in atomic and nuclear problems. The Graz group has carefully checked
the accuracy of the results for all baryon levels. In particular they have ensured conver-
gence with respect to all dynamical ingredients. In the most extensive calculations, namely
the higher excited states, they went up to including as many as 20 angular-momentum-
spin-isospin channels. All these numbers have been cross-checked with the recent stochastic
variational method of Ref. [131].

In Fig. 3.3 we show their results for the non-relativistic Model I, mentioned in the pre-
vious section. It is clear that the whole set of lowest N and ∆ states is quite correctly
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reproduced. In the most unfavorable cases, deviations from experimental values do not ex-
ceed 3 %. In addition, all level orderings are correct. Most impressive is the correct level
ordering of the positive- and negative-parity states : the Roper N(1400) resonance lies below
the pair N(1535)-N(1520) of negative-parity states. The same is true in the ∆ spectrum.
Thus a long-standing problem of baryon spectroscopy is now definitely resolved. Note that
here no spin-orbit or tensor force is included, therefore the fine-structure splittings in the
LS-multiplets are not introduced. We shall see later that in the new versions of the model
the tensor force is taken into account.
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Figure 3.3: Spectra of N and ∆ in the non-relativistic GBE Model I (from Ref. [43]).

It is instructive to learn how the GBE interaction affects the energy levels when it is
switched on and its strength (coupling constant) is gradually increased as shown in Fig. 3.4
for the Model I. Starting out from the case with confinement only, one observes that the
degeneracy of states is removed and the inversion of the ordering of positive- and negative-
parity states is achieved, both in the N and ∆ excitations after the coupling constant reaches
the value 0.67. The reason for this behavior lies in the flavour dependence of the GBE
interaction and with SUF (3) symmetry breaking. It is interesting also to compare the results
of Fig. 3.4 with our results based on a simple one parameter variational solution. The value
of the parameter β is found from the condition
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∂

∂β
< N |H|N >= 0 (3.47)

where |N > is a s3 harmonic oscillator wave function with β the harmonic oscillator size.
This ansatz is very satisfactory because < N |H|N > takes a minimal value of 970 MeV
at β = 0.437 fm, i. e. only 30 MeV above the actual value in the dynamical three-body
calculation. We used the same approximation for the ∆ ground state and we found it at
1272 MeV with β = 0.511 fm. Note that the ∆-N splitting is also correct. Fig. 3.5 shows
the change of levels with the coupling constant in a simple variational method based on the
harmonic oscillator. This variational solution will be used in the study of the nucleon-nucleon
interaction. That is why it is important that the results are close to exact calculations. Note
however that the single harmonic description is not enough in order to describe higher baryon
excitations and in particular the negative-parity states, even if correct ordering is obtained
for N and ∆ separately.
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Figure 3.4: Level shifts of lowest N and ∆ states as a function of the coupling constant
g2
8/4π in Model I of the GBE interaction [43]. Solid and dashed lines correspond to positive-

and negative-parity states, respectively (from Ref. [43]).

Authors of Ref. [43] have also calculated root-mean-square radii for the nucleon and

the ∆. They obtained
√

< r2N > = 0.465 fm and
√

< r2∆ > = 0.54 fm. Our results in the

harmonic approximation are very close to those of Ref. [43]. For the nucleon the axial r.m.s.

radius is
√

< r2axial > = 0.68 fm and the proton charge r.m.s. radius is
√

< r2p > = 0.862

fm. However it is clear that GBE results must be smaller, as both these phenomenological
values include effects from the finite size of the constituent quarks and from meson-exchange
currents.
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Figure 3.5: Same as Fig. 3.4 but for s3 harmonic oscillator wave function approximation
(from Ref. [5]).

It is interesting to note that a good description is also achieved for the strange baryons
(Λ,Σ,Ξ,Ω) without changing or adding a single parameter. But of course one must take into
account the kaon exchange in (3.38). The largest deviation in the strange baryon spectra
is of the order of 150 MeV (≈ 10 %) for Λ(1405). Else, the discrepancies are smaller than
a few percents. Anyhow, the level ordering is in all cases right. This fact is most remark-
able because for strange baryons the experimental ordering of positive- and negative-parity
states is opposite as compared to the N and ∆ spectra. A flavour-independent quark-quark
interaction, such as one-gluon exchange, is not able to account for this distinction. The
flavour-dependence is naturally included in the GBE model. Again, it is the symmetry of
the chiral interaction (3.38) which accounts for this property. The change of the lowest part
of the Λ spectrum with the increase of the coupling constant is shown in Fig. 3.6. One
can see that the flavour-singlet negative-parity state remains the first excitation above the
positive-parity ground state. Contrary to N , the first negative-parity state of Λ is strongly
influenced by the chiral interaction (see Table 3.2) but unfortunately is not lowered enough.

The parametrization of Model I has the unwanted property that the volume integral of the
chiral potential does not vanish as it should be for a pseudoscalar exchange interaction with
a finite meson mass. That is why the Model II has been proposed. With the parametrization
of Model II a similar description of the baryon spectra is achieved. The N and ∆ spectra are
reproduced in Fig. 3.7. Strange spectra have the same quality that in Model I.

Finally, it is of first importance to note that the parametrization of Table 3.5 is only
one of several possible choices. Clearly further constraints on the parameters would be
welcome. They could come from strong or electromagnetic decay studies or the nucleon-
nucleon interaction.
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Figure 3.6: Same as Fig. 3.4 but for Λ lowest positive- (solid lines) and negative-parity
(dashed lines) levels [44].
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Figure 3.7: Spectra of N and ∆ in the non-relativistic GBE Model II (from Ref. [128]).
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In the next chapter we will study the NN interaction in the two non-relativistic versions
of the GBE interaction, namely Model I and Model II. We mention however below the recent
developments of the GBE constituent quark model, in a semi-relativistic version of the model.
This is based on the following three-quark Hamiltonian

H =
N
∑

i=1

√

~p2
i +m2

i + VConf + VHyp. (3.48)

Here the relativistic form of the kinetic-energy operator is employed with ~pi, the three-
momenta and mi the masses of the constituent quarks. The dynamical parts, namely the
confinement and the hyperfine interaction, are chosen with exactly the same form as that of
Model II but with other parameter values. These values are gathered in Table 3.6 and 3.7
for the a priori fixed and free parameters, respectively [47].

mu,d ms µπ µK µη µη′

340 500 139 494 547 958

Table 3.6: The a priori determined parameters of the semi-relativistic Model II (MeV) [47].

V0 (MeV) C (fm−2) g2
8/4π g2

0/4π Λ0 (fm−1) κ

-416 2.33 0.67 0.898 2.87 0.81

Table 3.7: Free parameters of the Hamiltonian in the semi-relativistic Model II [47].
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Figure 3.8: Spectra of the N and ∆ in the semi-relativistic Model II of the GBE.
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The same remark about the sets of the parameters fitting the spectra has to be mentioned
here : the parameters are only one choice out of many possible sets that could lead to a
similar quality description of the baryon spectra. The baryon spectra alone do not guarantee
a unique determination of the model parameters. Nevertheless, it is rewarding to find the
present parameter values of reasonable magnitude. For example the confinement strength is
comparable with the string tension extracted from lattice calculations and it is also consistent
with the slopes of Regge trajectories. The strength of the coupling constant for all the octet
mesons is extracted from the phenomenological pion-nucleon coupling constant as discussed
in Section 3.2.3 and has been considered as a fixed parameter in the calculations of Ref [47].
In this way one can say that in practice this model involves only five free parameters.
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Figure 3.9: Spectra of the Λ and Σ in the semi-relativistic Model II [47].

The results obtained with the semi-relativistic version of the GBE Model II are presented
in Figs. 3.8-3.10 for the light non-strange and strange spectra. In particular we note the
right level ordering of the Roper resonance and the first negative-parity states in the N spec-
trum. However, in the ∆ spectrum, the GBE semi-relativistic parametrization predicts the
∆1600

3
2
+

to be heavier than the lowest negative-parity states, contrary to the non-relativistic
parametrization. This is the main qualitative difference between spectra employing a non-
relativistic and a semi-relativistic kinematics for light or strange flavours.

The difference is not so surprising if one looks at Table 3.2 which implies that the chiral
interaction is less powerful in ∆ than in N . In practice the spin-flavor matrix element of Vχ

for ∆1600 is about three times smaller than the corresponding matrix element for the Roper

resonance. Moreover, the confinement in the semi-relativistic case is much larger than the
confinement in the non-relativistic case. This means that level spacing is higher in the semi-
relativistic case. For the ∆1600, which has a larger spatial extension than the Roper resonance,
the short-range hyperfine interaction is then not enough to reproduce the correct ordering. On
the other side, the small value of the confinement strength in the non-relativistic approach is
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not really consistent with the values commonly accepted for the QCD string constant, C ≈ 2.5
fm−2. But as we have already mentioned, in a non-relativistic approach the parameters have
to be considered as effective.
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Figure 3.10: Spectra of the Ξ and Ω in the semi-relativistic Model II [47].

Although the models considered up to now are thought to be a consequence of the sponta-
neous chiral symmetry breaking, the chiral partner of the pion, the σ meson is not considered
explicitly. One can think that its contribution is already included in the parameters of the
spin independent part of the Hamiltonian. But let us consider it explicitly as in the following
semi-relativistic Hamiltonian

H =
N
∑

i=1

√

~p2
i +m2

i + V0 +
N
∑

i=1

Crij −
g2
σ

4π

{

e−µσr

rij
− e−Λσr

rij

}

. (3.49)

where mi = 340 MeV, C = 2.534 fm−2 which is very close to the semi-relativistic GBE

parametrization and µσ = 600 MeV. The coupling constant g2
σ

4π and the regularization param-
eter Λσ are taken as variable parameters. Note that this interaction is attractive whenever
µσ < Λσ. In Fig. 3.11-3.12 we present the eigenvalues of the 1S, 2P and 2S states as a

function of g2
σ

4π obtained in Ref. [122] for two different values of Λσ.

Let us look at the limit Λσ → ∞ first. In this case one can see in Fig. 3.11 that the
mass difference between the radially excited state and the ground state remains practically
constant as a function of the coupling constant while the mass difference between the radially

and orbitally excited states decreases with g2
σ

4π until it becomes negative for g2
σ

4π > 0.75. This is
precisely the desired behavior of reproducing the correct order of the experimental spectrum
as it was achieved with the GBE interaction but this time coming from a potential whose
Laplacian is negative in a region around the origin.
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Figure 3.11: Energies of the first three eigenvalues of Hamiltonian (3.49) for increasing
values of the coupling constant g2

σ/(4π) in the limit Λ → ∞ [122].
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Figure 3.12: Same as Fig. 3.11 but for a finite cut-off Λ = 2 GeV [122].
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Realistically, one expected Λσ to be finite. The results are shown in Fig. 3.12 for Λσ = 2
GeV. In this case the conclusion is different : the crossing effect of 2S with 1P disappears
because when a regularizing term with a finite Λ is subtracted from the attractive Yukawa-
type term this leads to a ∆V ≥ 0 contribution at small values of r. Indeed, as shown in Fig.
3.12 the level spacings are much less sensitive to the strength of the coupling constant. In
this case the σ-exchange potential leads in practice to a global shift of the whole spectrum
which can be compensated by the constant V0 in (3.49).

We now present the extension of the GBE chiral quark model [132, 133, 134] beyond the
previous pseudoscalar exchange version, which considered the spin-spin hyperfine interaction
only. In this extended model the tensor part has also been introduced because the pseu-
doscalar exchange gives rise to a spin-spin component but to a tensor component as well.
The inclusion of the multiple GBE has also been considered by the introduction of vector
and scalar meson exchanges. The vector meson nonet exchange interaction has central, spin-
spin, tensor and spin-orbit components. The scalar singlet σ-meson exchange comes with
only central and spin-orbit forces. Detailed of the parametrization can be found in Refs.
[132, 133, 134]. The spectra of the N , ∆ and Λ up to an energy of E ≈ 1800 MeV are
shown in Fig. 3.13. The various levels are well reproduced in rather good agreement with
the experimental data. All essential features of the GBE model are present, in particular the
correct level orderings of positive- and negative-parity states are reproduced. Furthermore,
the extremely small splittings of equal-parity multiplets existing in the experimental data are
also well described even though all tensor force components are now included in the hyperfine
interaction. The reason lies in the fact that the individually large tensor force contributions
from the pseudoscalar and vector meson exchanges practically cancel each other.
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Figure 3.13: Spectra of the N , ∆ and Λ in the extended semi-relativistic Model II with
pseudoscalar, vector and scalar exchanges [132, 133, 134].
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The extended GBE chiral quark model provides a promising basis for a number of further
investigations. The addition of vector and scalar exchanges to the pseudoscalar exchange
and the inclusion of all force components turns out to be essential in properties such as the
electromagnetic nucleon form factors, the hadronic decays of baryon resonances, and also in
the derivation of the baryon-baryon interactions.

3.5 Form Factors

In the previous section we showed the remarkable success of the GBE model in reprodu-
cing the detailed features of the lowest part of the excitation spectra of light non-strange and
strange baryons. Baryon spectroscopy, however, is only a first, though quite demanding test
of low-energy models of QCD. Furthermore, constituent quark models should also provide a
comprehensive description of other hadron phenomena, such as electromagnetic properties,
resonance decays, etc. More stringent tests of any constituent quark model consist in the
proton and neutron electromagnetic form factors, GE and GM observed in elastic electron-
nucleon scattering. Further important constraints are furnished by the nucleon weak form
factors, i. e. the axial form factor GA and the induced pseudoscalar form factor GP . They
reflect the structure of the nucleons as probed by an axial vector field in processes such as beta
decay, muon capture and pion production. In contrast to the electromagnetic form factors,
the weak form factors involve a combination of the proton and neutron wave functions. This
provides another test for the nucleon ground state obtained from the GBE eigensolutions. In
this section we present the recent covariant results obtained by Boffi et al. [15] for all elastic
electroweak nucleon form factors.

Experience PFSA NRIA Conf.

r2p [fm2] 0.780(25) [77] 0.81 0.10 0.37

r2n [fm2] -0.113(7) [65] -0.13 -0.01 -0.01
µp [n. m.] 2.792847337(29) [52] 2.7 2.74 1.84
µn [n. m.] -1.91304270(5) [52] -1.7 -1.82 -1.20
√

< r2A > [fm] 0.635(23) [71] 0.53 0.36 0.43

gA 1.255± 0.006 [52] 1.15 1.65 1.29

Table 3.8: Proton and neutron charge radii as well as magnetic moments and nucleon axial
radius as well as axial charge. Predictions of the GBE model in PFSA (third column), in
NRIA (fourth column), and with the confinement interaction only (last column).

The calculation are performed in a covariant form using the point form approach to
the relativistic quantum mechanics [31]. In the point form the four-momentum operators Pµ

containing all the dynamics commute with each other and can be simultaneously diagonalized.
All other generators of the Poincaré group are not affected by interactions. In particular
because the Lorentz generators do not contain any interaction terms, the theory is manifestly
covariant. Moreover the electromagnetic current operator Jµ(x) can be written in such a
way that it transform as an irreducible tensor operator under the Poincaré group. Thus
the electromagnetic form factors can be calculated as reduced matrix elements of such an
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irreducible tensor operator in the Breit frame. The same procedure can be applied to the
axial current. Once GA is known, GP can be extracted from the longitudinal part of the
axial current in the Breit frame. The current operator is a single-particle current operator for
point-like constituent quarks. In the literature it is called point form spectator approximation
(PFSA).

0 1 2 3 4

Q
2
 [(GeV/c)

2
]

0.0

0.5

1.0

Andivahis

Walker

Sill

Hoehler

Bartel

G
E

p

0 1 2 3 4

Q
2
 [(GeV/c)

2
]

0.00

0.05

0.10

Eden

Meyerhoff

Lung

Herberg

Rohe

Ostrick

Becker

G
E

n

0 1 2 3 4

Q
2
 [(GeV/c)

2
]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Andivahis

Walker

Sill

Hoehler

Bartel

G
M

p

0 1 2 3 4

Q
2
 [(GeV/c)

2
]

−2.0

−1.5

−1.0

−0.5

0.0

Lung

Markowitz

Rock

Bruins

Gao

Anklin 98

Anklin 94
G

M

n

Figure 3.14: Proton (left) and neutron (right) electric (upper) and magnetic (lower) form
factors as predicted by the GBE model in PFSA (solid lines). A comparison is given to the
results in NRIA (dashed) and the case with the confinement interaction only (dashed-dotted).
The experimental data are from Ref. [2] (from Ref. [135]).

The prediction [135] of the GBE for the nucleon electromagnetic form factors are shown
in Fig. 3.14. Their properties at zero momentum transfer are reflected by the charge radii
and magnetic moments given in Table 3.8. The input into the calculations consists only in
the proton and neutron three-quark wave functions as produced by the ground state of the
GBE Hamiltonian [47]. One observes that an extremely good description of both the proton
and neutron electromagnetic structure is achieved. Relativity plays a major role here. For
comparison Wagenbrunn et al. [135] also showed results for the form factors when calculated
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in non-relativistic impulse approximation (NRIA), i. e. with the standard non-relativistic
form of the current operator and without Lorentz boosts applied to the nucleon wave func-
tions. Evidently there is no way of describing the nucleon electromagnetic form factors in a
non-relativistic theory if quarks are considered as point-like.

In order to get an idea of the role of the GBE hyperfine interaction in the form factors,
Wagenbrunn et al. have considered the case with the confinement potential only. In addition
to differences in the wave functions, the nucleons now also have a larger mass of mconf

N = 1353
MeV. This different mass is very important for the behavior of the form factors for low Q2

and is essentially responsible for the corresponding results given in the last column of Table
3.8. Shifting the nucleon mass artificially to mN = 939 MeV would change the charge radii
and magnetic moments in the following way: r2 → r2(mconf

N /mN )2 and µ → µ(mconf
N /mN ).

As a result the proton charge radius as well as the magnetic moments of both the proton and
the neutron would then already be very close to the values obtained with the full interaction.
Only the neutron charge radius would still remain much too small, due to the absence of the
mixed-symmetry component in the wave function for the case with the confinement potential
only. Though the mixed-symmetry component brought about by the hyperfine interaction is
rather small, it turns out to be most essential for reproducing the neutron charge radius in a
reasonable manner. It is then evident that Gn

E is essentially driven by the combined effects
of small mixed-symmetry components in the neutron wave function which are induced only
by the hyperfine interaction and Lorentz boosts.

The nucleon axial form factor GA and the induced pseudoscalar form factor GP are shown

in Fig. 3.15 and the axial radius
√

< r2A > as well as the axial charge gA are given in Table 3.8.
In the top panel of Fig. 3.15 the GA predictions of the GBE model in PFSA are compared to
experimental data, which are presented assuming the common dipole parametrization with
the axial charge gA = 1.255 ± 0.006, as obtained from β-decay experiments [52], and three
different values for the nucleon axial mass MA

GA(Q2) =
gA

(

1 + Q2

MA2

)2 (3.50)

Again a remarkable agreement of the theory and experiment is detected; only at Q2 = 0
does the PFSA calculation underestimate the experimental value of gA and, consequently,
also the axial radius. In contrast, both the NRIA results and also the results from a calcula-
tion with a relativistic axial current but no boosts on the wave functions fall tremendously
short. Again the inclusion of all relativistic effects, in order to produce a covariant result,
appears most essential.

The PFSA predictions of the GBE model for the induced pseudoscalar form factor GP also
fall readily on the available experimental data. For this result the pion-pole term occurring
in the axial current turns out to be most important, especially at low Q2. This is clearly seen
by a comparison of the solid curve in the lower panel of Fig. 3.15 with the results obtained
without the pion-pole term. It follows that at least for low Q2 values the role of pions is
essential. It is also remarkable that the agreement of the PFSA predictions with experiment
is obtained by using the same value of the quark-pion coupling constant g2

πq/4π = 0.67 as
employed in the GBE model of Ref. [47].
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Figure 3.15: Nucleon axial and induced pseudoscalar form factors GA and GP , respectively
(from Ref. [15]). The PFSA predictions of the GBE model are always represented by solid
lines. In the top panel a comparison is given with the NRIA results (dashed) and to the
case with a relativistic current operator but no boosts included (dot-dashed); experimental
data are shown assuming a dipole parametrization with the axial mass value MA deduced
from pion electroproduction (world average : squares, Mainz experiment [71] : circles) and
from neutrino scattering [62] (triangles). In the bottom panel the dashed line refers to the
calculation of GP without any pion-pole contribution. Experimental data are from Ref. [4].

In summary, the chiral constituent quark model based on GBE dynamics predicts all ob-
servables of the electroweak nucleon structure in a consistent manner. The covariant results
calculated in the framework of the point form relativistic quantum mechanics always fall
rather close to the available experimental data. This indicates that a quark model using the
proper low-energy degrees of freedom may be capable of providing a reasonable description
also of other dynamical phenomena in addition to the baryon spectra.
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3.6 Decays

In this section we shall present some new investigations done by Theußl et al. [128] in the
description of π and η decays of N and ∆ resonances within different constituent quark mo-
dels. A comparison between the modern experimental database [52] and the results obtained
in the GBE model (with or without tensor force) and the OGE model, in a relativistic or
semi-relativistic description will be presented. In that work, two approaches were considered
for the derivation of the strong interaction transition operator.

The first approach is the elementary emission model (EEM) where the decay takes place
through the emission of a point-like meson by one of the quarks of the baryon as shown
in Fig. 3.16 (a). The baryons are therefore considered as composite objects, whereas the
meson is treated as a point-like particle that couples to the quark. As a consequence, the
interaction potential between quarks intervenes only through the baryon wave functions in
the initial and final states. The process should therefore be a good test for the quality of
the wave function provided by the constituent quark model. However the performance of the
EEM in describing strong decays of non-strange baryon resonances is far from being good
which give rise to serious doubts whether this decay mechanism, namely the EEM, used in
the calculations, is really appropriate.

B

B’

B

B’

MM

EMM (a) (b)P0
3

Figure 3.16: Decay of a baryon B by the emission of a point-like meson M (a) and by the
emission of a composite meson (b).

It seems then natural to investigate the influence of the most important model simplifi-
cation of the EEM : the point-like nature of the emitted meson. Indeed in strong-interaction
physics, in particular with light quark flavours, the extended size of any hadron should not
be negligible. This feature is taken into account in decay models that describe the transition
process by the creation of an additional quark-antiquark pair. The corresponding models
are generally referred to as quark-pair creation models. In the simplest version, one assumes
that all the quarks in the initial hadron are spectators, so that the qq̄-pair is necessarily
created from the vacuum which is flavour and colour singlet and has zero momentum and
total angular momentum JPC = 0++ (L = 1, S = 1). These quantum numbers have given
the name to the simplest and most popular model of hadronic transitions : the 3P0 model.
In the following, we shall present the results obtained in a modified version of the 3P0 model
[19] including a relativistic boost effect. In this model there are two important ingredients.
The first is a parameter γ representing the probability for a qq̄-pair creation anywhere in the
vacuum. This parameter is adjusted in order to reproduce the ∆1232 → Nπ or N1535 → Nη
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decay width. The second ingredient is the shape of the meson wave function. Theußl et

al. [129] used both a Yukawa- and a Gaussian-like wave function with an extension rπ for
the pion and rη for the eta meson. They showed that the specific form have only minor
influence on the prediction of the decays widths. However the size of the meson is impor-
tant even if the introduction of a finite size meson wave function does not lead to a striking
improvement in predictions for decay widths, except in few cases as e. g. the Roper resonance.

3.6.1 The π decays

The results for the partial widths of the π decay modes of the N and ∆ resonances are
shown in Table 3.9. All values presented here have been calculated with a Gaussian-type
parametrization of the meson wave function. For the baryons, the theoretical masses have
been used as predicted by the different constituent quark models given in the table heading.
All the decay widths can then be considered as genuine predictions of the models along the
modified 3P0 model.

N∗ Jπ Γ(N∗ → Nπ) [MeV]

GBE SR GBE SR T GBE NR OGE SR OGE NR Exp.

N1440
1
2

+
517 646 258 1064 161 (227 ± 18)+70

−59

N1710
1
2

+
54 87 14 202 8 (15 ± 5)+30

−5

∆1232
3
2
+

120 120 120 120 120 (119 ± 1)+5
−5

∆1600
3
2

+
43 87 34 174 14 (61 ± 26)+26

−10

N1520
3
2

−
131 146 161 108 168 (66 ± 6)+9

−5

N1535
1
2
−

336 294 75 462 109 (67 ± 15)+55
−17

N1650
1
2

−
53 176 5 87 8 (109 ± 26)+36

−3

N1675
5
2

−
34 61 35 40 52 (68 ± 8)+14

−4

N1700
3
2
−

6 64 6 7 9 (10 ± 5)+3
−3

∆1620
1
2

−
26 22 3 41 5 (38 ± 8)+8

−6

∆1700
3
2

−
28 41 29 20 38 (45 ± 15)+20

−10

N1680
5
2
+

85 112 85 149 313 (85 ± 7)+6
−6

N1720
3
2

+
377 577 100 689 238 (23 ± 8)+9

−5

γ 15.365 16.525 14.635 18.015 11.868

Table 3.9: Decay widths of baryon resonances for the GBE and OGE constituent quark
models both in non-relativistic (NR) and semi-relativistic (SR) parametrizations (from Refs.
[128, 129]). A Gaussian-type meson wave function with rπ = 0.565 fm was used along with
a modified 3P0 decay model. Experimental data are from Ref. [52].

Table 3.9 also allows a comparison of the theoretical results to experimental data as
compiled by the Particle Data Group (PDG) [52]. For the latter there arise two kinds of
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uncertainties : first, the total decay width of each resonance is given by a central value and
a lower and upper bound. Second, the partial decay width has its own uncertainty. In Table
3.9 we quote the value for the π decay widths deduced from the central value of the total
width and first add the uncertainty from the partial decay width itself (numbers inside the
brackets in the last column). Then we indicate also the range of the total decay width by an
upper and lower bound. We understand that the total uncertainty in a partial decay width
must be estimated by combining both types of uncertainties (inherent separately in the total
and partial widths).

The OGE model chosen here is the model of Bhaduri, Cohler and Nogami [14] where
the hyperfine interaction consists of a Coulomb term, a linear confinement and a flavour-
independent spin-spin interaction where the parameters have been determined from a fit of
the baryon spectra. The GBE model is the Model II presented in the previous section.

Analyzing the results in details we note that for the N1440
1
2

+
resonance the semi-

relativistic (SR) GBE prediction is obviously too large, whereas the pertinent non-relativistic
(NR) result lies within the experimental error bars. The SR OGE result overshoots the ex-
periment by far, its non-relativistic version is also much smaller than the SR one and lies
just at the lower end of the experimental error bar. The results for the next 1

2
+

excitation of
the nucleon, the N1710, show a similar relative pattern as the ones for the Roper resonance,
though all the values are smaller by about an order of magnitude. The fact that for each
case, N1440 and N1710, the predictions of the SR parametrizations of both the OGE and GBE
models exceed by far their NR counterparts can be readily understood because of the higher
momentum components present in the SR parametrizations, as compared to the NR ones.
In case of the OGE SR this effect is enhanced by a phase space that is much too large and
which is due to the bad prediction of the resonance energy.

For the N1720
3
2

+
resonance the results again have similar characteristics, with the SR

cases drastically overshooting the experimental data. Here, however, none of the NR versions
can come close to the rather small experimental width. This problem may hint to a wrong
symmetry assignment (or a strong mixing) of this state. Only for the N1680

5
2
+

resonance
the GBE model produces correct results, both in its SR and NR versions. In this case the
results from both variants of the OGE constituent quark model are again too high.

For the negative-parity N1535
1
2
−

resonance the SR results are also much too high, whereas

the predictions from the NR versions agree with experiment. For the N1650
1
2
−

the situation
is just reversed. Most disappointingly, in all instances the widths of the N1535 resonance are
larger than the ones of N1650, contrary to experiment, where the N1535 width appears to be
smaller or is at most as large as the N1650 width. Regarding the L = 1, S = 3

2 multiplet
N1650−N1675−N1700, one notes that the SR parametrizations give approximately the correct
ratios of these widths, as it is expected from the corresponding spin-isospin matrix elements.
These features are not found for the NR parametrizations due to the exceedingly small value
of the N1650 width. Concerning the negative-parity N excitations, it is interesting to note
that certain resonances are more sensible to the different parametrizations than others.

The decay widths for the ∆ resonances are practically all correct for the SR GBE model.
In case of the other models the one or the other shortcoming appears.
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3.6.2 The η decays

Table 3.10 gives the results for η decays. Theuß et al. use the same spatial part for the
meson wave function as for π decays but the constant γ is adjusted so as to reproduce the η
decay width of the N1535 resonance. Furthermore, they use an unmixed flavour wave function
for the η meson, i. e. a pure flavour octet state. For non-strange decays as regarded here,
a possible mixing would only influence the normalization of this wave function, which can
effectively be absorbed into the coupling constant γ.

N∗ Jπ Γ(N∗ → Nη) [MeV]

GBE SR GBE SR T GBE NR OGE SR OGE NR Exp.

N1440
1
2

+
6 10

N1710
1
2
+

26 15 4 50 10

N1520
3
2

−
0 0 0 0 0

N1535
1
2

−
64 64 64 64 64 (64 ± 19)+76

−15

N1650
1
2
−

113 33 68 140 94 (10 ± 5)+4
−1

N1675
5
2

−
2 2 4 3 5

N1700
3
2

−
0 0 1 1 1

N1680
5
2
+

0 0 1 2 6

N1720
3
2

+
15 15 11 30 25

γ 5.929 4.80 6.682 6.572 4.937

Table 3.10: Same than in Fig. 3.9 but for N∗ → Nη, rη = 0.565 fm (from Refs. [128, 129]).

The η widths of the Roper resonance N1440 for the GBE parametrizations (NR as well
as SR) are rigorously zero, since in both cases the theoretically predicted masses lie below
the η threshold, in accordance with experiment. For the OGE parametrizations, the decay
N1440 → Nη is possible, the corresponding widths remain rather small, however.

In all, there are four resonances predicted with considerable branching ratios in the η
decay channel. Only for the N1535 and N1650 resonances one can compare the theoretical
predictions to experiment, since these are the only ones with an experimental width assigned
by the PDG [52]. The relative magnitudes of the experimental decay widths in both of these
cases are missed by all theoretical models. This is again reminiscent of the EEM, where a
similar effect is found.

In addition to N1535 and N1650, also the widths of the N1710 and the N1720 resonances
come out appreciably large. The PDG does not quote any experimental data for these states.
This does not necessarily mean that their widths are vanishing or too small to be measured.
It may simply be the case that experimental ambiguities do not allow yet for a reliable deter-
mination. In fact, there are single partial-wave analyzes that assign an appreciable η decay
width, for example, also to the N1710, see Ref. [13].
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From the presented results it is still difficult to draw definite conclusions about the qua-
lity of the wave functions stemming from different quark models. In fact, the various decay
widths seem to be more determined by the choice of the SR or NR parametrizations rather
than by the use of either type of dynamics, GBE or OGE. One might expect that the decays
of these resonances are quite sensitive to the tensor force in the quark-quark interaction.
But the inclusion of these force components does not really improve the description of both
Nπ and Nη decays for these resonances in the SR GBE as shown in Tables 3.9 and 3.10 in
the column GBE SR T. Thus, the description of strong decays of baryon resonances within
present constituent quark models is not yet fully satisfactory. The reasons for the persisting
difficulties may on the one hand reside in the baryon wave functions. On the other hand one
must realize that the 3P0 decay model may also fall short as it is based on intuitive grounds
and lacks a firm theoretical foundation. A consistent microscopic description of the strong-
decay processes thus remains a challenging task. One can think of a number of improvements
to be done. For example, the proper inclusion of relativistic effects appears mandatory. The
encouraging work, which is on the way, by Plessas et al. [97], within the point form for-
malism presented in the previous section indicates a serious improvement of the pion decays
of N and ∆. In particular the width of the Roper resonance acquires a reasonable magnitude.

3.7 Conclusion

In this chapter we discussed the theoretical foundation and phenomenological implica-
tions of the GBE hyperfine interaction introduced in Chapter 2. The early quark model was
successful in classifying hadrons and describing some gross properties of their spectra but no
firm evidence on the dynamics of the valence quarks was achieved. Even when motivated by
QCD, the concept of one-gluon exchange was introduced as a hyperfine interaction between
confined constituent quarks, we have seen that a number of delicate problems remained un-
solved. In that context one has not been able to explain the correct level ordering of the
first positive-parity and the first negative-parity excited states in both light- and strange-
baryons spectra. This shortcoming essentially stem from the fact that the implications of
the spontaneous breaking of chiral symmetry presented in Section 3.2 are not properly taken
into account in such models. As a consequence of this symmetry breaking, baryons are to be
considered as systems of three constituent quarks that interact by Goldstone boson exchange,
the pseudoscalar mesons, and are subject to confinement.

The remarkable successes of the GBE quark-quark interaction in reproducing the spectra
has been shown as coming from the particular symmetry introduced through the spin-flavor
operator ~σi · ~σj

~λi · ~λj and by the short-range part of the interaction with a proper sign.
Several parametrizations of this interaction have been presented in this chapter, both within
a relativistic and a non-relativistic kinematic. However, we have seen from the spectra cal-
culated by Glozman et al. [43]-[47] and presented in this chapter, that the quality of the
results depends only a little on the parametrization interaction. Extended versions of the
GBE model, necessary for further investigations, were also presented.

However, baryon spectra is only a first test of a low-energy QCD modelization. That is
why, to show the performances of this model, we presented some stringent tests of the GBE
interaction where, apart from its Hamiltonian eigenvalue, the wave function were analyzed.
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First, we discussed the predictions of observables related to the electroweak nucleon structure
in the framework of the point form approach to the relativistic quantum mechanics. Theo-
retical predictions fall quite close to the available experimental data if the GBE dynamics is
used in a semi-relativistic version.

We have then looked at the strong decays widths in the 3P0 decay model, and in particular
the pion decay of N and ∆ resonances. Poor agreement has been obtained as compared to
the experimental data, the widths seem to be more determined by the choice of the kinetic
parametrization (relativistic or non-relativistic) rather than by the type of dynamics (GBE
or OGE). The origin of these discrepancies may come either from the baryon wave function
or from the 3P0 decay model considered in the derivation of the results. Anyhow, promising
works under progress within a point form approach seem to indicate that it is the formalism
which is responsible of the difficulties to reproduce experiment.

In all, the GBE chiral quark model provides a promising basis for a number of further
investigations. In particular the middle- and long-range parts of the quark-quark interaction
is not really constrained by the observables at the baryon level, as for example the σ-meson
exchange introduced in Section 3.4. This leaves room for more adjustment of the parametriza-
tion. It is then natural to extend the study of the GBE interaction to systems composed of
more than three quarks. Our first interest here is to find out if the GBE interaction can
explain the short-range repulsion of a two-nucleon system. This will be the main purpose of
the following chapter.





Chapter 4

Preliminary Studies

Following the successes of the baryon description reviewed in the previous chapter, it is
quite natural to extend the application of the GBE model to other systems. The present chap-
ter is a first exploratory step towards calculating the NN interaction starting from a system
of six interacting quarks. The first arising question is whether or not the chiral constituent
quark model presented in the previous chapter is able to produce a short-range repulsion in the
NN system. For this purpose, we diagonalize the corresponding Hamiltonian in a harmonic
oscillator basis containing up to two excitations quanta. Using the Born-Oppenheimer (adi-
abatic) approximation, we obtain an effective internucleon potential between nucleons from
the difference between the lowest eigenvalue of the six-quark Hamiltonian and two times the
nucleon (three-quark) mass calculated in the same model.

First we compute the adiabatic potential at zero separation distance only. We use a clus-
ter model single particle basis. The result indicates the presence of a short-range repulsion.
We then repeat these calculations in an orbital molecular basis. We still obtain a repulsion
at zero separation. Furthermore we extend our calculations to any separation distance Z
between two nucleons in both the cluster and molecular basis. The resulting potential indi-
cates the presence of a repulsive core of about 1 fm which is quite reasonable. The potential
obtained in the cluster and the molecular bases are very similar. However at short-range,
due to a larger Hilbert space, the molecular basis improves slightly the results.

Both Model I and Model II, presented in the previous chapter, have been used in the
derivation of the adiabatic potential. The results are very similar. However some differences
appear, in particular in the shape of the potential. In Model II, the repulsion is higher at
small Z but has a shorter range as compared to that of Model I.

Finally we show that the introduction of a scalar-exchange interaction at the quark level,
considered as due to two pion exchanges, provides a middle-range attraction.

49
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4.1 The GBE Hamiltonian

In this section we briefly recall the GBE models [42, 43] used in the study of the NN
interaction. In both cases, the Hamiltonian reads

H = 6m+
∑

i

~p2
i

2m
− (

∑

i ~pi)
2

12m
+
∑

i<j

Vconf(rij) +
∑

i<j

Vχ(rij) (4.1)

where m is the constituent quark mass and rij = |~ri − ~rj | is the interquark distance.

The confining interaction is

Vconf (rij) = −3

8
λc

i · λc
j (C rij + V0) (4.2)

where λc
i are the SU(3)-color matrices and C and V0 are parameters given below.

The spin-spin component of the GBE interaction between the constituent quarks i and j
reads

Vχ(~rij) =

{

3
∑

a=1

Vπ(~rij)λ
a
i λ

a
j

+
7
∑

a=4

VK(~rij)λ
a
i λ

a
j + Vη(~rij)λ

8
i λ

8
j + Vη′(~rij)λ

0
i λ

0
j

}

~σi · ~σj, (4.3)

where λa, a = 1, ..., 8 are the flavor Gell-Mann matrices and λ0 =
√

2/3 1, where 1 is the 3×3
unit matrix. Thus the interaction (4.3) includes π, K, η and η′ exchanges. While the π, K, η
mesons are the Goldstone bosons of the spontaneously broken SU(3)L × SU(3)R → SU(3)V
chiral symmetry, the η′ (flavor singlet) is not a priori a Goldstone boson. But it becomes a
Goldstone boson in the large Nc limit (see Chapter 3). This is an argument to include it in
the model. For systems formed of u and d quarks only, the K-exchange does not contribute.
It is the case here because we deal only with nucleons.

In the simplest case, when both the constituent quarks and mesons are point-like particles
and the boson field satisfies the linear Klein-Gordon equation, one has the following spatial
dependence for the meson-exchange potentials [42]

Vγ(~rij) =
g2
γ

4π

1

3

1

4m2
{µ2

γ

e−µγrij

rij
− 4πδ(~rij)}, (γ = π,K, η, η′) (4.4)

where µγ are the meson masses and g2
γ/4π are the quark-meson coupling constants given

below.

Eq. (4.4) contains both the traditional long-range Yukawa potential as well as a δ-function
term. It is the latter that is of crucial importance for baryon spectroscopy since it has a proper
sign to provide the correct hyperfine splittings in baryons. Since one deals with structured
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particles (both the constituent quarks and pseudoscalar mesons) of finite extension, one must
smear out the δ-function in (4.4). The Graz group has proposed several parametrizations of
the model, some presented in the previous chapter, in order to improve the description of the
baryon spectra. Here we use only two non-relativistic versions of the model as justified below.
We shall show that the regularized δ-function term is crucial in describing the short-range
repulsion in the NN potential. But as we shall see in this preliminary studies, the details
of this regularization do not really matter. In Ref. [43] a smooth Gaussian term has been
employed instead of the δ-function

4πδ(~rij) ⇒
4√
π
α3 exp(−α2(r − r0)

2). (4.5)

where α and r0 are adjustable parameters. In this version of the model the parameters of
the Hamiltonian (4.1) are [43]

g2
πq

4π
=
g2
ηq

4π
= 0.67,

g2
η′q

4π
= 1.206,

mu,d = 340MeV, C = 0.474 fm−2,

µπ = 139 MeV, µη = 547 MeV, µη′ = 958 MeV,

r0 = 0.43 fm, α = 2.91 fm−1, V0 = 0 MeV. (4.6)

The Hamiltonian (4.1) with the parameters (4.6) provides a very satisfactory description
of the low-lying N and ∆ spectra in a fully dynamical non-relativistic 3-body calculation [43].
In the following, we shall call this version the Model I.

The other parametrization, called here Model II, is given in Ref. [44]

Vγ(r) =
g2
γ

4π

1

12mimj
{µ2

γ

e−µγr

r
− Λ2

γ

e−Λγr

r
}, (4.7)

where Λγ = Λ0 + κµγ and the parameters

g2
πq

4π
=
g2
ηq

4π
= 1.24,

g2
η′q

4π
= 2.7652,

mu,d = 340 MeV, C = 0.77 fm−2,

µπ = 139 MeV, µη = 547 MeV, µη′ = 958 MeV,

Λ0 = 5.82 fm−1, κ = 1.34, V0 = −112 MeV. (4.8)

Certainly more fundamental studies are required to understand this second term and at-
tempts are being made in this direction. The instanton liquid model of the vacuum (for a
review see [106]) implies point like quark-quark interactions. To obtain a realistic description
of the hyperfine interaction this interaction has to be iterated in the t-channel [48]. The
t-channel iteration admits a meson exchange interpretation [100].
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At present we restricted to use an s3 harmonic oscillator wave function for the nucleon
in the NN problem. The parametrization (4.6) is especially convenient for this purpose since
it allows to use the s3 as a variational ansatz. Otherwise the structure of N should be more
complicated. With an s3 ansatz the average < N |H|N > takes a minimal value of 969.6 MeV
at a harmonic oscillator parameter value of β = 0.437 fm [95], i.e. only 30 MeV above the
actual value in the dynamical 3-body calculation. In this way one satisfies one of the most
important constraint for the microscopic study of the NN interaction : the nucleon stability
condition (see next chapter) [89]

∂

∂β
< N |H|N >= 0. (4.9)

The other condition, the qualitatively correct ∆ −N splitting, is also satisfied [95].

We keep in mind, however, that a non-relativistic description of baryons cannot be com-
pletely adequate. In principle it would be better to use a parametrization of the GBE inter-
action as given in [47] based on a semi-relativistic Hamiltonian. Within the semi-relativistic
description of baryons [46] the parameters extracted from the fit to baryon masses become
considerably different and even the representation of the short-range part of GBE has a dif-
ferent form. Within a semi-relativistic description the simple s3 wave function for the nucleon
is not adequate anymore. All this suggests that the description of the nucleon based on the
parameters (4.6) or (4.8) and an s3 wave function is only effective. Since here we study
only qualitative effects, related to the spin-flavor structure and sign of the short-range part
of GBE interaction, we consider the present non-relativistic parametrization as a reasonable
framework.

4.2 A qualitative analysis at the Casimir operator level

In order to have a preliminary qualitative insight it is convenient first to consider a
schematic model which neglects the radial dependence of the GBE interaction. In this model
the short-range part of the GBE interaction between the constituent quarks is approximated
by [42]

Vχ = −Cχ

∑

i<j

λf
i .λ

f
j ~σi.~σj , (4.10)

where λf with an implied summation over f (f=1,2,...,8) and ~σ are the quark flavor Gell-Mann
and spin matrices respectively. The minus sign of the interaction (4.10) is related to the sign
of the short-range part of the pseudoscalar meson-exchange interaction (which is opposite to
that of the Yukawa potential tail), crucial for the hyperfine splittings in baryon spectroscopy
as seen in Chapter 2. The constant Cχ can be determined from the ∆ − N splitting. For
that purpose one only needs the spin (S), flavor (F) and flavor-spin (FS) symmetries of the
N and ∆ states, identified by the corresponding partitions [f] associated with the groups
SU(2)S , SU(3)F and SU(6)FS

|N > = |s3[3]FS [21]F [21]S >, (4.11)

|∆ > = |s3[3]FS [3]F [3]S > . (4.12)
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Then the matrix elements of the interaction (4.10) are [42]

< N |Vχ|N > = −14 Cχ, (4.13)

< ∆|Vχ|∆ > = −4 Cχ. (4.14)

Hence E∆ − EN = 10Cχ, which gives Cχ = 29.3MeV, if one uses the experimental value of
293 MeV for the ∆ −N splitting.

To see the effect of the interaction (4.10) in the six-quark system, the most convenient is
to use the coupling scheme called FS, where the spatial [f ]O and color [f ]C parts are coupled
together to [f ]OC , and then to the SU(6)FS flavor-spin part of the wave function in order to
provide a totally antisymmetric wave function in the OCFS space [53]. The antisymmetry
condition requires [f ]FS = [f̃ ]OC , where [f̃ ] is the conjugate of [f ].

The color-singlet 6q state is [222]C . Assuming that N has a [3]O spatial symmetry, there
are two possible states [6]O and [42]O compatible with the S-wave relative motion in the
NN system [83]. The flavor and spin symmetries are [42]F and [33]S for 1S0 and [33]F and
[42]S for 3S1 channels. Applying the inner product rules of the symmetric group for both the
[f ]O× [f ]C and [f ]F × [f ]S products one arrives at the following 6q antisymmetric states asso-
ciated with the 3S1 and 1S0 channels [53, 118] : |[6]O[33]FS >, |[42]O[33]FS >, |[42]O [51]FS >,
|[42]O[411]FS >, |[42]O[321]FS >, |[42]O[2211]FS >.

Then the expectation values of the GBE interaction (4.10) for these states can be easily
calculated in terms of the Casimir operators eigenvalues of the groups SU(6)FS , SU(3)F and
SU(2)S using the following formula

<
∑

i<j

λi.λj~σi.~σj >= 4C
SU(6)
2 − 2C

SU(3)
2 − 4

3
C

SU(2)
2 − 8N (4.15)

where N is the number of particles, here N = 6, and C
SU(n)
2 is the Casimir operator eigen-

values of SU(n) which can be derived from the expression

C
SU(n)
2 =

1

2
[f ′1(f

′
1 + n− 1) + f ′2(f

′
2 + n− 3) + f ′3(f

′
3 + n− 5)

+f ′4(f
′
4 + n− 7) + ...+ f ′n−1(f

′
n−1 − n+ 3)] − 1

2n
(
n−1
∑

i=1

f ′i)
2 (4.16)

where f ′i = fi − fn, for an irreducible representation given by the partition [f1, f2, ..., fn].

The corresponding matrix elements are given in Table 4.1, from where one can see that,
energetically, the most favorable configuration is [51]FS for Vχ. This is a direct consequence
of the general rule that at short-range and with fixed spin and flavor, the more “symmetric”
a given FS Young diagram is, the more negative is the expectation value of (4.10). The
difference in the potential energy between the configuration [51]FS and [33]FS or [411]FS is
of the order
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< [33]FS |Vχ|[33]FS > − < [51]FS |Vχ|[51]FS > =
< [411]FS |Vχ|[411]FS > − < [51]FS |Vχ|[51]FS > = 24 Cχ

(4.17)

and using Cχ given above one obtains approximately 700 MeV for both the SI = 10 and 01
sectors.

I = 0, S = 1 I = 1, S = 0
[f ]o[f ]FS < Vχ > < Vcm > < Vχ > < Vcm >

[6]o[33]FS -28/3 8/3 -8 8
[42]o[33]FS -28/3 -26/9 -8 -4/3
[42]o[51]FS -100/3 16/9 -32 16/9
[42]o[411]FS -28/3 20/9 -8 44/9
[42]o[321]FS 8/3 -164/45 4 232/45
[42]o[2211]FS 68/3 -62/15 60 42/5

Table 4.1: Expectation values of the operators defined by Eqs. (4.10) and (4.23) for all
compatible symmetries [f ]O[f ]FS in the SI = 10 and 01 sector. < Vχ > is in units of Cχ and
< Vcm > in units of Ccm.

In a harmonic oscillator basis containing up to 2h̄ω excitation quanta, there are two dif-
ferent 6q states corresponding to the [6]O spatial symmetry with removed center of mass
motion. One of them, |s6[6]O >, belongs to the N = 0 shell, where N is the number of exci-

tation quanta in the system, and the other,
√

5
6 |s52s[6]O > −

√

1
6 |s4p2[6]O >, belongs to the

N = 2 shell. There is only one state with [42]O symmetry, the |s4p2[42]O > state belonging
to the N = 2 shell. While here and below we use notations of the shell model it is always
assumed that the center of mass motion is removed.

The kinetic energy KE for the |s4p2[42]O > state is larger than the one for the |s6[6]O >
state by KEN=2 − KEN=0 = h̄ω. Taking h̄ω ≃ 250 MeV [42], and denoting the kinetic
energy operator by H0, we obtain

< s6[33]FS |H0 + Vχ|s6[33]FS > − < s4p2[51]FS |H0 + Vχ|s4p2[51]FS >≃ 453 MeV (4.18)

which shows that [51]FS is far below the other states of Table 4.1. For simplicity, here we
have neglected a small difference in the confinement potential energy between the above con-
figurations.

This qualitative analysis suggests that in a more quantitative study, where the radial
dependence of the GBE interaction is taken into account, the state |s4p2[42]O[51]FS > will
be highly dominant and, due to the important lowering of this state by the GBE interaction
with respect to the other states, the mixing angles with these states will be small. This is
indeed the case, it will be proved in the following.

Table 4.1 and the discussion above indicate that for the diagonalization of a realistic
Hamiltonian as (4.1) the following most important configurations should be taken into account
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|1 > = |s6[6]O[33]FS >
|2 > = |s4p2[42]O[33]FS >
|3 > = |s4p2[42]O[51]FS >
|4 > = |s4p2[42]O[411]FS >

(4.19)

As already mentioned, one also has to include the
√

5
6 |s52s[6]O > −

√

1
6 |s4p2[6]O >

state which belongs to the N = 2 shell if one takes up to two excitation quanta in the
system. Stancu et al. [119] have extended the basis (4.19) by adding the configuration
|(
√

5/6s52s−
√

1/6s4p2[6]o[33]FS > in their calculations and showed that it practically does
not change much the result at Z = 0. That is why we shall neglect it in the treatment given
below.

Now we want to give a rough estimate of the interaction potential of the NN system at zero
separation distance between nucleons. We calculate this potential in the Born-Oppenheimer
(or adiabatic) approximation defined as

VNN (Z) =< H >Z − < H >∞ (4.20)

where Z is a collective coordinate which is the separation distance between the two s3 nucle-
ons, < H >Z is the lowest expectation value of the Hamiltonian describing the 6q system at
fixed Z and < H >∞= 2mN for the NN problem, i.e. the energy of two well separated nucle-
ons. As above, we ignore the small difference between the confinement energy of < H >Z=0

and < H >∞. That this difference is small follows from the λc
i .λ

c
j structure of the confining

interaction and from the identity

< [222]c|
6
∑

i<j

λc
i .λ

c
j |[222]c >= 2 < [111]c|

3
∑

i<j

λc
i .λ

c
j |[111]c > . (4.21)

This identity shows that if the space parts [6]O and [3]O contain the same single particle
state, for example an s-state, then the difference is identically zero.

It has been shown by Harvey [53] that when the separation Z between two s3 nucleons
approaches zero, then only two types of 6q configurations survive: |s6[6]O > and |s4p2[42]O >.
Thus in order to extract an effective NN potential at zero separation between nucleons in the
adiabatic approximation one has to diagonalize the Hamiltonian in the basis |1 > −|4 >. For
the rough estimate below we take only the lowest configuration |3 >. One then obtains

< s4p2[42]O[51]FS |H0 + Vχ|s4p2[42]O [51]FS > −2 < N |H0 + Vχ|N >=

{

(−100/3 + 28)Cχ + 7/4h̄ω = 280 MeV, if SI=10
(−32 + 28)Cχ + 7/4h̄ω = 320 MeV, if SI=01

(4.22)

At this stage it is useful to compare the nature of the short-range repulsion generated by
the GBE interaction to that produced by the OGE interaction.
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In the constituent quark models based on OGE the situation is more complex. Table 4.1
helps in summarizing the situation there. The OGE interaction is described by the simplified
chromomagnetic interaction

Vcm = −Ccm

∑

i<j

λc
i .λ

c
j~σi.~σj (4.23)

in units of the constant Ccm (the constant Ccm can also be determined from the ∆ − N
splitting to be Ccm ≃ 293/16 MeV).

The expectation values of (4.23) can be easily obtained in the CS scheme with the help
of Casimir operator formula above and can be transformed to the FS scheme by using the
unitary transformations from the CS scheme to the FS scheme. All these transformations
are given in Ref. [119].

The chromomagnetic interaction pulls the configuration |s4p2[42]O[42]CS > down to be-
come approximately degenerate with |s6[6]O[222]CS > which is pulled up. In a more detailed
calculation with explicit radial dependence of the chromomagnetic interaction as well as with
a Coulomb term the configuration |s6[6]O > is still the lowest one [89, 85]. With the model
(4.23) the h̄ω should be about 500 MeV. Thus in the Born-Oppenheimer approximation we
can roughly estimate an effective interaction given by the OGE model through the difference

< s6[6]O[222]CS |H0 + Vcm|s6[6]O[222]CS > −2 < N |H0 + Vcm|N > (4.24)

=

{

56
3 Ccm + 3/4h̄ω = 717 MeV if SI = 10
24Ccm + 3/4h̄ω = 815 MeV if SI = 01

(4.25)

We conclude that both the GBE and OGE models imply effective repulsion at short-range.

The matrix elements of the Hamiltonian (4.1) are calculated in the basis (4.19) by using
the fractional parentage technique described in Refs. [53] and also applied in Ref. [119]. A
program based on Mathematica [142] has been created for this purpose. In this way every
six-body matrix element reduces to a linear combination of two-body matrix elements of
either symmetric or antisymmetric states for which Eqs. (3.3) of Ref. [42] can be used to
integrate in the flavor-spin space.

In dealing with n particles the matrix elements of a symmetric two-body operator between
totally (symmetric or) antisymmetric states ψn and ψ′

n reads

< ψn|
∑

i<j

Vij |ψ′
n >=

n(n− 1)

2
< ψn|Vn−1,n|ψ′

n > (4.26)

The matrix elements of Vn−1,n are calculated by expanding ψn and ψ′
n in terms of products

of antisymmetric states of the first n− 2 particles ψn−2 and of the last pair φ2

ψn =
∑

αβ

Pαβψn−2(α)φ2(β) (4.27)
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with α, β denoting the possible structures of ψn−2 and φ2 and Pαβ the products of cfp coef-
ficients in the orbital, spin-flavor and color space states. In practical calculations, the color
space cfp coefficients are not required. The orbital cfp are taken from Ref. [116], Tables 1
and 2 by using the replacement r4l2 → s4p2 and r5l → s5p. The trivial ones are equal to
one. The flavor-spin cfp for SI = 10 are identical to the K̄-matrices of Table 1 Ref. [117]
with [42]S [33]F in the column headings. For SI = 01 they are the same as for SI = 10
but the column headings is [42]F [33]S instead of [42]S [33]F as above, and this is due to the
commutativity of inner products of Sn (see for example Ref. [118]). The cfp used in the OC
coupling are from Ref. [116] Table 3, for [42]O × [222]C → [3111]OC and Table 5 of Ref. [117]
for [42]O × [222]C → [222]OC and [42]O × [222]C → [21111]OC .

In this way, after decoupling all degrees of freedom one can integrate out in the color,
spin and flavor space. The net outcome of this algebra is that any six-body matrix element
becomes, as we mentioned above, a linear combination of two-body orbital matrix elements,
< Vπ >,< Vη > and < Vη′ >. The coefficients of < Vπ > are the same for SI = 10 and 01,
but the coefficients of < Vη > are usually different. In both cases the coefficients of < Vη′ >
are two times those of < Vη >. We found that the two-body GBE matrix elements satisfy
the relations < Vπ >≃< Vη > and < Vη′ >≃ 2 < Vπ >. As an example, in Table 4.2 we show
the matrix elements obtained for SI = 10. Similar results are obtained in Model II. Except
for < ss|Vγ |pp >, they are all negative, i.e. carry the sign of Eq. (4.10).

The six-quark states are constructed from the following single particle harmonic oscillator
states

|s > = π−3/4β−3/2 exp (−r2/2β2) (4.28)

|p >m = 81/23−1/2π−1/4β−5/2r exp (−r2/2β2)Y1m (4.29)

Two-body matrix elements γ = π γ = η γ = η′

< ss|Vγ |ss > -0.108357 -0.104520 -0.189153
< ss|Vγ |(pp)L=0 > 0.043762 0.042597 0.076173
< sp|Vγ |sp > -0.083091 -0.079926 -0.145175
< (pp)L=0|Vγ |(pp)L=0 > -0.081160 -0.078594 -0.142205

Table 4.2: All one-meson exchange two-body matrix elements (in GeV) for the sector SI = 10
evaluated at β = 0.437 fm in the framework of the Model I. The remaining matrix element
is < sp|Vγ |ps >= − < ss|Vγ |(pp)L=0 > /

√
3.

All orbital two-body matrix elements of the confining potential Vconf = Cr required in
theses calculation can be obtained analytically. They are

< ss|Vconf |ss > =

√

2

π
2Cβ

< sp|Vconf |sp > =

√

2

π

7Cβ

3

< sp|Vconf |ps > = −
√

2

π

Cβ

3
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< ss|Vconf |(pp)L=0 > = −
√

3 < sp|Vconf |ps >

< (pp)L=0|Vconf |(pp)L=0 > =

√

2

π

5Cβ

2
(4.30)

Finally, the kinetic energy matrix elements can be calculated as above, by writing the
relative kinetic energy operator as a two-body operator

T =
∑

i

p2
i

2m
− 1

12
(
∑

i

~pi)
2 =

∑

i<j

Tij (4.31)

with

Tij =
1

12m
(p2

i + p2
j) −

1

6m
~pi. ~pj (4.32)

Alternatively we can use an universal formula for the kinetic energy of harmonic oscillator
states

KE =
1

2
[N +

3

2
(n − 1)]h̄ω +

3

4
h̄ω (4.33)

where N is the number of quanta and n the number of particles. The last term is the kinetic
energy of the center of mass.

4.3 Hamiltonian diagonalization in the cluster model at Z = 0

In Tables 4.3 and 4.4 we present our results obtained from the diagonalization of the
Hamiltonian (4.1) in the basis |1 > − |4 > of (4.19). We use the definition of the effective NN
potential as given by the Born-Oppenheimer approximation (4.20) at zero separation between
nucleons. All diagonal matrix elements and eigenvalues presented in Tables 4.3 and 4.4 are
given relative to two-nucleon threshold, which means that the quantity 2 < N |H|N >= 1939
MeV has always been subtracted. In the second column we present the diagonal matrix
elements for all the states listed in the first column. In the third column we present all the
eigenvalues obtained from the diagonalization of a 4 × 4 matrix. In the fourth column the
amplitudes of all components of the ground state are given. In agreement with the qualitative
results above, one can see that the expectation value of the configuration |s4p2[42]O[51]FS >
given in column 2 is much lower than all the other ones, and in particular it is about 1.4 GeV
below the expectation value of the configuration |s6[6]O[33]FS >.

The substantial lowering of the configuration |s4p2[42]O[51]FS > relative to the other
ones implies that this configuration is by far the most important component in the ground
state eigenvector. The last column of Tables 4.3 and 4.4 implies that the probability of this
configuration is 98% both for SI = 10 and SI = 01. As a consequence, the lowest eigenvalue
is only about 40 MeV lower than the expectation value of the configuration |3 >.
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The main outcome is that VNN (Z = 0) is highly repulsive in both 3S1 and 1S0 channels,
the height being 0.915 GeV in the former case and 1.453 GeV in the latter one.

State Diag. elem - 2 mN Eigenvalues - 2 mN Lowest state amplitudes

|s6[6]O[33]FS > 2.346 0.915 -0.10686

|s4p2[42]O[33]FS > 2.824 1.922 0.08922

|s4p2[42]O[51]FS > 0.942 2.956 -0.98854

|s4p2[42]O[411]FS > 2.949 3.268 0.05843

Table 4.3: Results of the diagonalization of the Hamiltonian (4.1) for SI = 10 in the GBE
Model I. Column 1 - basis states, column 2 - diagonal matrix elements (GeV), column 3
- eigenvalues (GeV) in increasing order for a 4 x 4 matrix, column 4 - components of the
lowest state. The results correspond to β = 0.437 fm . The diagonal matrix elements and
the eigenvalues are relative to 2 mN= 1939 MeV

In order to see that it is the GBE interaction which is responsible for the short-range
repulsion, it is very instructive to remove Vχ from the Hamiltonian (4.3), compute the “nu-
cleon mass” in this case, which turns out to be mN = 1.633 GeV at the harmonic oscillator
parameter β = 0.917 fm and diagonalize such a Hamiltonian again in the basis (4.19). In this
case the most important configuration is |s6[6]O[33]FS >. Subtracting from the lowest eigen-
value the “two-nucleon energy” 2mN = 2 × 1.633 GeV one obtains V no χ

NN (Z = 0) = −0.197
GeV. This soft attraction comes from the nonphysical color forces related to the pairwise
confinement. These forces would not appear if the basis was restricted to the |s6 > state
only. If the spatially excited 3q clusters from the s4p2 configurations were removed the forces
would disappear and we would arrive at V no χ

NN (Z = 0) = 0. Thus it is the GBE interaction
which brings about 1 GeV repulsion, consistent with the previous discussion.

State Diag. elem - 2 mN Eigenvalues - 2 mN Lowest state amplitudes

|s6[6]O[33]FS > 2.990 1.453 -0.10331

|s4p2[42]O[33]FS > 3.326 2.436 0.09371

|s4p2[42]O[51]FS > 1.486 3.557 -0.98723

|s4p2[42]O[411]FS > 3.543 3.899 -0.07694

Table 4.4: Same as Table 4.3 but for SI = 01.

The effective repulsion obtained above implies a strong suppression of the L = 0 relative
motion wave function in the nucleon overlap region, as compared to the wave function of two
well separated nucleons.

There is another important mechanism producing additional effective repulsion in the
NN system, which is related to the symmetry structure of the lowest configuration but not
related to its energy relative to the NN threshold. This “extra” repulsion, related to the
“Pauli forbidden state” [103], persists if any of the configurations from the |s4p2 > shell
becomes highly dominant [83]. Indeed, the NN phase shift calculated with a pure [51]FS

state, which is projected “by hands” (not dynamically) from the full NN state in a toy model
[89], shows a behavior typical for repulsive potentials. As a result the s-wave NN relative
motion wave function has an almost energy independent node [82, 83]. A similar situation
occurs in 4He−4 He scattering [126]. The only difference between this nuclear case and the
NN system is that while in the former a configuration s8 is indeed forbidden by the Pauli
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principle in eight-nucleon system, the configuration s6 is allowed in a six-quark system, but
is highly suppressed by dynamics, as it was discussed above. The existence of a strong effec-
tive repulsion, related to the energy balance in the adiabatic approximation, as in our case,
suggests, however, that the amplitude of the oscillating NN wave function at short distance
will be strongly suppressed. This is equivalent with a “Pauli forbidden state effect”. In the
OGE model this effect is absent because none of the [42]O states is dominant [89, 85, 54].

In the present section we have calculated an adiabatic NN potential at zero separation
between nucleons in the framework of a chiral constituent quark model. Diagonalizing a
Hamiltonian in a basis consisting of the most important 6q configurations in the nucleon
overlap region, we have found a very strong effective repulsion of the order of 1 GeV in both
3S1 and 1S0 NN partial waves. Due to the specific flavor-spin symmetry of the Goldstone
boson exchange interaction the configuration |s4p2[42]O[51]FS > becomes highly dominant
at short-range. As a consequence, the projection of the full 6q wave function onto the NN
channel should have a node at short-range in both 3S1 and 1S0 partial waves. The amplitude
of the oscillation left to the node should be strongly suppressed as compared to the wave
function of two well separated nucleons.

Thus, within the chiral constituent quark model one has all the necessary ingredients to
understand microscopically the NN interaction. There appears strong effective short-range
repulsion from the same part of Goldstone boson exchange which also produces hyperfine
splittings in baryon spectroscopy. The long-range attraction in the NN system is auto-
matically implied by the Yukawa part of pion exchange between quarks belonging to different
nucleons. With this first encouraging result, it might be worthwhile to perform a more elab-
orate study of the NN system with the present quark model. This we be done in Chapter 5
in the resonating group method.

4.4 Six-quark states from molecular orbitals

Here we follow closely Ref. [114] where the use of molecular orbitals in the construction
of six-quark states was originally proposed, instead of commonly used cluster model states
as in the previous section. Let us denote by Z the separation coordinate between the centers
of the two clusters. At finite Z, in the simplest cluster model basis, each of the six quarks
is described by an orbital wave function represented by a Gaussian centered either at Z/2 or
−Z/2. These non-orthogonal states are denoted by R (right) and L (left) respectively

R(~r) = ψ

(

~r −
~Z

2

)

and L(~r) = ψ

(

~r +
~Z

2

)

. (4.34)

Alternatively, in a molecular basis we consider the two lowest states, σ which is even and
π which is odd. These could be either the solutions of a static, axially and reflectionally sym-
metric independent particle model Hamiltonian (see for example [63]) or, as for the present
purpose, can be constructed from R and L states.

First we introduce pseudo-right and pseudo-left states r and l starting from the molecular
orbitals σ and π as
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[

r
l

]

= 2−1/2 (σ ± π) for all Z, (4.35)

where

< r|r >=< l|l >= 1, < r|l >= 0. (4.36)

On the other hand, starting from the cluster model states, one can construct good parity,
orthonormal states for all Z by setting

[

σ
π

]

= [2(1± < R|L >)]−1/2(R± L), (4.37)

which, introduced in Eq. (4.35) gives

[

r
l

]

=
1

2

[

R+ L

(1+ < R|L >)1/2
± R− L

(1− < R|L >)1/2

]

. (4.38)

At Z → 0 one has σ → s and π → p (with m = 0,±1), so that

[

r
l

]

= 21/2(s± p), (4.39)

and at Z → ∞ one has r → R and l → L.

From (r, l) as well as from (σ, π) orbitals one can construct six-quark states of required
permutation symmetry. For the S6 symmetries relevant for the NN problem the transforma-
tions between six-quark states expressed in terms of (r, l) and (σ, π) states are given in Table
I of Ref. [114]. This table shows that in the limit Z → 0 six-quark states obtained from
molecular orbitals contain configurations of type snp6−n with n = 0, 1, ..., 6. For example
the [6]O state contains s6, s6p4, s2p4 and p6 configurations and the [42]O state associated to
the S-channel contains s4p2 and s2p4 configurations. This is in contrast to the cluster model
basis where [6]O contains only s6 and [42]O only s4p2 configurations [53]. This suggests that
the six-quark basis states constructed from molecular orbitals form a richer basis without
introducing more single particle states. Here we examine its role in lowering the ground state
energy of a six-quark system described by the Hamiltonian introduced in the next section.

Using Table I of Ref. [114] we find that the six-quark basis states needed for the 3S1 or
1S0 channels are

|33[6]O[33]FS 〉 =
1

4

∣

∣

∣

[√
5
(

s6 − p6
)

−
√

3
(

s4p2 − s2p4
)]

[6]O[33]FS

〉

,

|33[42]O[33]FS 〉 =

√

1

2

∣

∣

∣

[

s4p2 − s2p4
]

[42]O[33]FS

〉

,

|33[42]O[51]FS 〉 =

√

1

2

∣

∣

∣

[

s4p2 − s2p4
]

[42]O[51]FS

〉

,
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|33[42]O[411]FS 〉 =

√

1

2

∣

∣

∣

[

s4p2 − s2p4
]

[42]O[411]FS

〉

,

∣

∣42+[6]O[33]FS

〉

=
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√

1

2

∣

∣

∣

[√
15
(
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)

−
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s4p2 + s2p4
)]

[6]O[33]FS

〉

,

∣
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〉
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√

1

2

∣

∣

∣

[

s4p2 + s2p4
]

[42]O[33]FS

〉
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∣
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〉
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∣

∣
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]

[42]O[51]FS

〉
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∣

∣42+[42]O[411]FS

〉

=

√

1

2

∣

∣

∣

[

s4p2 + s2p4
]

[42]O[411]FS

〉
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∣51+[6]O[33]FS

〉
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∣
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[√
3
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s6 − p6
)

+
√

5
(

s4p2 − s2p4
)]

[6]O[33]FS

〉

,

(4.40)

where the notation 33 and mn+ in the left hand side of each equality above means r3ℓ3 and
rmℓn + rnℓm, respectively, as in Ref. [114] (see also discussion below). Each wave function
contains an orbital part (O) and a flavor-spin part (FS) which combined with the color sin-
glet [222]C state gives rise to a totally antisymmetric state. We restricted the flavor-spin
states to [33]FS , [51]FS and [411]FS as in (4.19) for the cluster model.

Besides being poorer in snp6−n configurations, as explained above, the number of basis
states is smaller in the cluster model although we deal with the same [f ]O and [f ]FS sym-
metries and the same harmonic oscillator states s and p in both cases. This is due to the
existence of three-quark clusters only in the cluster model states, while the molecular basis
also allows configurations with five quarks to the left and one to the right, or vice versa, or
four quarks to the left and two to the right or vice versa. At large separations these states
act as “hidden color” states but at zero separation they bring a significant contribution, as
we shall see below.

The matrix elements of the Hamiltonian (4.1) are calculated in the basis (4.40) by using
the fractional parentage technique. Another program based on Mathematica [142] has been
created for this purpose. In this way every six-body matrix element reduces again to a linear
combination of two-body matrix elements of either symmetric or antisymmetric states. Then
the linear combinations contain orbital two-body matrix elements of the type 〈ss |Vγ | ss〉,
〈ss |Vγ | pp〉, 〈sp |Vγ | sp〉, 〈sp |Vγ | ps〉 and 〈pp |Vγ | pp〉L = 0 where γ = π, η or η′, as in (4.4) or
(4.7). Here we study the case Z = 0 for which harmonic oscillator states s and p are given
by (4.28) and (4.29), respectively.

The Hamiltonian (4.1) in the six-quark basis (4.40) is then diagonalized and we calculate
the NN interaction potential in the Born-Oppenheimer approximation given by Eq. (4.20).

Here we study the case Z = 0, relevant for short separation distances between the nu-
cleons. Later in this chapter we will extend the calculations to any Z.

In Tables 4.5 and 4.6 we present our results for SI = 10 and 01 respectively, obtained
from the diagonalization of H with the parametrization of Model I [6]. From the diagonal
matrix elements Hii as well as from the eigenvalues, the quantity 2mN = 1939 MeV has been
subtracted according to Eq. (4.20). Here mN is the nucleon mass calculated also variationally,
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with an s3 configuration, as mentioned in the previous section. This value is obtained for a
harmonic oscillator parameter β = 0.437 fm [95]. For sake of comparison with Ref. [119] we
take same value of β for the six-quark system as well.

State Hii - 2 mN Eigenvalues - 2 mN Lowest state amplitudes

|33[6]O [33]FS > 2.616 0.718 -0.04571

|33[42]O [33]FS > 3.778 1.667 0.02479

|33[42]O [51]FS > 1.615 1.784 -0.31762

|33[42]O [411]FS > 2.797 2.309 0.04274

|42+[6]O[33]FS > 3.062 2.742 -0.07988

|42+[42]O[33]FS > 2.433 2.784 0.12930

|42+[42]O[51]FS > 0.850 3.500 -0.93336

|42+[42]O[411]FS > 3.665 3.752 0.00145

|51+[6]O[33]FS > 2.910 4.470 -0.01789

Table 4.5: Results of the diagonalization of the Hamiltonian (4.1) in the GBE Model I for
SI = 10. Column 1 - basis states, column 2 - diagonal matrix elements (GeV), column 3
- eigenvalues (GeV) in increasing order, column 4 - lowest state amplitudes of components
given in column 1. The results correspond to β = 0.437 fm . The diagonal matrix elements
Hii and the eigenvalues are relative to 2 mN = 1939 MeV (see text).

In both SI = 10 and 01 cases the effect of using molecular orbitals is rather remarkable
in lowering the ground state energy as compared to the cluster model value obtained in the
four dimensional basis (4.3 - 4.4). Accordingly, the height of the repulsive core in the 3S1

channel is reduced from 915 MeV in the cluster model basis to 718 MeV in the molecular
orbital basis. In the 1S0 channel the reduction is from 1453 MeV to 1083 MeV. Thus the
molecular orbital basis is much better, inasmuch as the same two single particle states, s and
p, are used in both bases.

State Hii - 2 mN Eigenvalues - 2 mN Lowest state amplitudes

|33[6]O [33]FS > 3.300 1.083 -0.02976

|33[42]O [33]FS > 4.367 2.252 0.01846

|33[42]O [51]FS > 2.278 2.279 -0.20460

|33[42]O [411]FS > 3.191 2.945 -0.04729

|42+[6]O[33]FS > 3.655 3.198 -0.07215

|42+[42]O[33]FS > 2.796 3.317 0.13207

|42+[42]O[51]FS > 1.167 4.058 -0.96531

|42+[42]O[411]FS > 4.405 4.459 -0.00081

|51+[6]O[33]FS > 3.501 5.070 -0.01416

Table 4.6: Same as Table 4.5 but for SI = 01.

The previous study performed in a cluster model basis indicated that the dominant con-
figuration is associated to the symmetry [42]O[51]FS . It is the case here too and one can see
from Tables 4.5 and 4.6 that the diagonal matrix element Hii of the state |42+[42]O[51]FS >
is far the lowest one, so that this state is much more favored than |33[42]O [51]FS > . As
explained above, such a state represents a configuration with two quarks on the left and four
on the right around the symmetry center. At Z → ∞ its energy becomes infinite i. e. this
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state behaves as a hidden color state (see e. g. Ref. [53]) and it decouples from the ground
state. But at Z = 0 it is the dominant component of the lowest state with a probability
of 87 % for SI = 10 and 93 % for SI = 01. The next important state is |33[42]O [51]FS >
with a probability of 10 % for SI = 10 and 4 % for SI = 01. The presence of this state will
become more and more important with increasing Z. Asymptotically this state corresponds
to a cluster model state with three quarks on the left and three on the right of the symmetry
centre.

Energy Cluster model Molecular orbital
|s4p2[42]O[51]FS〉 |42+[42]O[51]FS〉

KE 2.840 3.139

Vconf 0.385 0.364

Vχ -2.384 -2.754

E 0.841 0.749

Table 4.7: Parts of the energy expectation values (GeV) of the dominant 6q state in the
cluster model and the molecular orbital basis for SI = 10 in the GBE Model I.

To have a better understanding of the lowering of the six-quark energy we present in Tables
4.7 and 4.8 the separate contribution of the kinetic energy KE, of the confinement Vconf and
of the GBE interaction Vχ to the dominant state in the cluster model |s4p2[42]O [51]FS〉
result and the dominant state in the molecular basis case respectively. Table 4.7 corresponds
to the 3S1 channel and Table 4.8 to the 1S0 channel. We can see that Vconf does not
change much in passing from the cluster model to the molecular orbital basis. The kinetic
energy KE is higher in the molecular orbital basis which is natural because the s2p4 and p6

configurations contribute with higher energies than s6 and s4p2. Contrary, the contribution
of the GBE interaction Vχ is lowered by several hundreds of MeV in both channels, so that
E = KE + Vconf + Vχ is substantially lowered in the molecular orbital basis. This shows
that the GBE interaction is more effective in the molecular orbital basis than in the cluster
model basis. Note that E differs from the value of the previous diagonal matrix elements by
the additional quantity 6m− 2mN , where m = mu = md.

Energy Cluster model Molecular orbital
|s4p2[42]O[51]FS〉 |42+[42]O[51]FS〉

KE 2.840 3.139

Vconf 0.385 0.364

Vχ -1.840 -2.437

E 1.385 1.066

Table 4.8: Same as Table 4.7 but for SI = 01

The practically identical confinement energy in both bases shows that the amount of
Van der Waals forces, as discussed in [119], remains the same. However, the soft attraction
brought in by the Van der Waals forces does not play an important role at short distances
and in the adiabatic approximation it disappears at long distance as we will see in the next
sections.

For both SI = 10 and 01 sectors we also searched for the minimum of 〈H〉Z=0 as a
function of the oscillator parameter β in the Model I parametrization. For SI = 10 the
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minimum of 572 MeV has been reached at β = 0.547 fm. For SI = 01 the minimum of 715
MeV was obtained at β = 0.608 fm. These values are larger than the value of β = 0.437 fm
associated to the nucleon, which is quite natural because a six-quark system at equilibrium
is a more extended object.

State Hii - 2 mN Eigenvalues - 2 mN Lowest state amplitudes

|33[6]O [33]FS > 2.181 1.326 -0.55253

|33[42]O [33]FS > 3.399 1.746 0.20484

|33[42]O [51]FS > 2.486 2.052 -0.17413

|33[42]O [411]FS > 2.492 2.307 0.04526

|42+[6]O[33]FS > 2.662 2.498 -0.49115

|42+[42]O[33]FS > 2.270 2.692 0.44882

|42+[42]O[51]FS > 1.894 3.166 -0.42124

|42+[42]O[411]FS > 3.261 3.366 0.01596

|51+[6]O[33]FS > 2.523 4.0153 0.00466

Table 4.9: Results of the diagonalization of the Hamiltonian (4.1) in the GBE Model II for
SI = 10. Column 1 - basis states, column 2 - diagonal matrix elements (GeV), column 3
- eigenvalues (GeV) in increasing order, column 4 - lowest state amplitudes of components
given in column 1. The results correspond to β = 0.437 fm . The diagonal matrix elements
Hii and the eigenvalues are relative to 2 mN = 1939 MeV (see text).

Now, let us look at the results in the Model II. If we use the same s3 description for N
with |s > given by (4.28), the variational parameter for the nucleon wave function is still
β = 0.437 fm. Most of the results are very similar to those of Model I as we can see from
Tables 4.9-4.12. Although Hii − 2mN associated with the |42+[42]O[51]FS > state remains
the lowest one, this state is not anymore dominant. Both |[6]O[33]FS > and |[42]O[33]FS >
states have significant contribution to the lowest eigenvector as seen in the last column of
Table 4.9 for SI = 10.

State Hii - 2 mN Eigenvalues - 2 mN Lowest state amplitudes

|33[6]O [33]FS > 2.407 1.392 0.43647

|33[42]O [33]FS > 3.548 1.847 -0.19427

|33[42]O [51]FS > 2.690 2.154 0.17021

|33[42]O [411]FS > 2.511 2.357 0.00124

|42+[6]O[33]FS > 2.849 2.561 0.46553

|42+[42]O[33]FS > 2.286 2.905 -0.51128

|42+[42]O[51]FS > 1.895 3.322 0.51210

|42+[42]O[411]FS > 3.483 3.580 0.002163

|51+[6]O[33]FS > 2.684 4.238 0.04890

Table 4.10: Same as Table 4.9 but for SI = 01.

For comparison with Model I, we also show the diagonalization results in the cluster
model basis in Tables 4.11 and 4.12 for SI = 10 and SI = 01, respectively. In this basis the
lowest eigenvalue is higher by about 600 MeV for SI = 10 as compared to that in the Model
I. Also the state |[6]O[33]FS > appears with the largest probability, both in SI = 10 and
SI = 01, contrary to the situation of Model I where |[42]O[51]FS > is far the most dominant
configuration.
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State Diag. elem - 2 mN Eigenvalues - 2 mN Lowest state amplitudes

|s6[6]O[33]FS > 1.961 1.515 0.74272

|s4p2[42]O[33]FS > 2.553 2.022 -0.47192

|s4p2[42]O[51]FS > 1.917 2.600 0.47073

|s4p2[42]O[411]FS > 2.596 2.890 -0.06385

Table 4.11: Results of the diagonalization of the Hamiltonian (4.1) in the GBE Model II for
SI = 10. Column 1 - basis states, column 2 - diagonal matrix elements (GeV), column 3
- eigenvalues (GeV) in increasing order for a 4 x 4 matrix, column 4 - components of the
lowest state. The results correspond to β = 0.437 fm . The diagonal matrix elements and
the eigenvalues are relative to 2 mN= 1939 MeV

State Diag. elem - 2 mN Eigenvalues - 2 mN Lowest state amplitudes

|s6[6]O[33]FS > 2.100 1.595 0.72712

|s4p2[42]O[33]FS > 2.626 2.082 -0.50000

|s4p2[42]O[51]FS > 1.998 2.729 0.47036

|s4p2[42]O[411]FS > 2.705 3.022 0.00837

Table 4.12: Same as Table 4.11 but for SI = 01.

It is interesting to look also at the details of the most important states. The different
values of the matrix elements are given in Tables 4.13-4.16. Note that the values of VConf

given here do not include the parameter V0 because it does not contribute in the adiabatic
approach.

|33[6]O[33]FS〉 |42+[6]O[33]FS〉 |42+[42]O[33]FS〉 |42+[42]O[51]FS〉
KE 2.541 2.890 3.139 3.139

Vconf 0.625 0.693 0.619 0.591

Vχ -0.403 -0.339 -0.906 -1.255

E 2.181 2.662 2.270 1.894

Table 4.13: Same as Table 4.7 for the molecular basis but in the GBE Model II.

|33[6]O[33]FS〉 |42+[6]O[33]FS〉 |42+[42]O[33]FS〉 |42+[42]O[51]FS〉
KE 2.541 2.890 3.139 3.139

Vconf 0.625 0.693 0.619 0.591

Vχ -0.177 -0.152 -0.889 -1.253

E 2.407 2.849 2.288 1.895

Table 4.14: Same as Table 4.8 for the molecular basis but in the GBE Model II.

|s6[6]O[33]FS〉 |s4p2[42]O[33]FS〉 |s4p2[42]O[51]FS〉
KE 2.242 2.840 2.840

Vconf 0.634 0.681 0.625

Vχ -0.334 -0.386 -0.967

E 1.961 2.553 1.917

Table 4.15: Same as Table 4.7 for the cluster model but in the GBE Model II.



4.5 NN interaction in the adiabatic approximation at any Z 67

|s6[6]O[33]FS〉 |s4p2[42]O[33]FS〉 |s4p2[42]O[51]FS〉
KE 2.242 2.840 2.840

Vconf 0.634 0.681 0.625

Vχ -0.195 -0.314 -0.886

E 2.100 2.626 1.998

Table 4.16: Same as Table 4.8 for the cluster model but in the GBE Model II.

In this section we have calculated the NN interaction potential at zero separation distance
between nucleons by treating NN as a six-quark system in a constituent quark model where
the quarks interact via Goldstone boson (pseudoscalar meson) exchange. The orbital part of
the six-quark states was constructed from molecular orbitals and the commonly used cluster
model single particle states. The molecular orbitals posses the proper axially and reflec-
tionally symmetries and are thus physically more adequate than the cluster model states.
Due to their orthogonality property they are also technically more convenient. Here we con-
structed molecular orbitals from harmonic oscillator s and p states. Such molecular orbitals
are a very good approximation [101] to the exact eigenstates of a ”two-center” oscillator,
frequently used in nuclear physics in the study of the nucleus-nucleus potential. The problem
of calculating an NN potential is similar in many ways.

We have shown that the upper bound of the ground state energy, and hence the height
of the repulsive core in the NN potential, is lowered by about 200 MeV in the 3S1 channel
and by about 400 MeV in the 1S0 channel with respect to the cluster model results. Hence
using molecular orbitals is more efficient than working with a cluster model basis. A repulsive
core of several hundred MeV is still present in both channels. Note also that the configura-
tions s2p4 or p6 introduced through the molecular orbitals might have an influence on the
momentum distribution of the NN system as was discussed, for example, in [64] within the
chromodielectric model.

The following step will be to calculate the NN potential at Z 6= 0. The Yukawa potential
tail in Eq. (4.4) is expected to bring the required long-range attraction. An extra middle-
range attraction will be also introduced. It can be considered as due to two correlated or
uncorrelated pion exchanges.

4.5 NN interaction in the adiabatic approximation at any Z

In this section we diagonalize the Hamiltonian 4.1 in the six-quark cluster model basis
and in the six-quark molecular orbital basis for values of the separation distance Z up to
2.5 fm. Using in each case the lowest eigenvalue, denoted by 〈H〉Z we again define the NN
interaction potential in the adiabatic (Born-Oppenheimer) approximation as

VNN (Z) = 〈H〉Z − 2mN −Krel (4.41)

This is the same as the definition (4.20) but with Krel subtracted. The quantity Krel

represents the relative kinetic energy of two 3q clusters separated at infinity



68 Preliminary Studies

Krel =
3h̄2

4mβ2 (4.42)

where m above and in the following designates the mass of the u or d quarks which is taken
equal to 340 MeV. For the value of β of both Model I and Model II this gives Krel = 0.448
GeV.

As above, mN is the nucleon mass obtained as a variational s3 solution for a 3q system de-
scribed by the Hamiltonian where the wave function has the form φ ∝ exp

[− (ρ2 + λ2
)

/2β2
]

with ρ = (~r1 − ~r2) /
√

2 and ~λ = (~r1 + ~r2 − 2~r3) /
√

6. The same value of β as that obtained
from minimizing mN = 〈H〉3q is also used for the 6q system. This is equivalent with impos-
ing the “stability condition” (4.9) which is of crucial importance in resonating group method
calculations [89, 109].
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Figure 4.1: The expectation value of the kinetic energy 〈KE〉 as a function of the separation
distance Z between two 3q clusters in the cluster model basis. The asymptotic value of 2.242
GeV , given by Eq. (4.43) is indicated. The full line corresponds to |[6]O〉 and the dashed
line to |[42]O〉 states. (Model I)

4.5.1 Cluster model basis

First we show contributions to VNN coming from different parts of the Hamiltonian. In
Fig. 4.1 we present the expectation value of the kinetic energy 〈KE〉 as a function of Z. One
can see that for the state

∣

∣R3L3[42]O
〉

it decreases with Z but for the state
∣

∣R3L3[6]O
〉

it
first reaches a minimum at around Z ∼= 0.85 fm and then it tends to an asymptotic value
equal to its value at the origin due to its s6 structure. This value is
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〈KE〉Z=0 = 〈KE〉Z=∞ =
15

4
h̄ω (4.43)

where h̄ω = h̄2/mβ2. Actually this also the value for 6q states with N = 0, as indicated by
Eq. (4.33) minus 3

4 h̄ω which is the center of mass motion. It is also the asymptotic value
for all states, irrespective of their symmetry.

The diagonal matrix elements of the confinement potential are presented in Fig. 4.2.
Beyond Z > 1.5 fm one can notice a linear increase except for the

∣

∣R3L3[42]O[51]FS

〉

state
where it reaches a plateau of 0.3905 GeV.

In the following we present in detail the contributions to VNN (Z) of Vconf and Vχ corres-
ponding to the GBE Model I. For Model II the results are qualitatively similar. We shall
return to the GBE Model II at the end of this section.
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Figure 4.2: The cluster model basis. The expectation value of Vconf of Eq. (4.2). The
corresponding states are : (1) - |[6]O[33]FS〉, (2) - |[42]O[33]FS〉, (3) - |[42]O [51]FS〉, (4) -
|[411]O [51]FS〉. Note that for curve (3) the scale is on the right hand side vertical line.
(Model I)

The diagonal matrix elements of the chiral interaction Vχ of the GBE Model I are exhibited
in Fig. 4.3 for SI = 10. At Z = 0 one recovers the values obtained before. At Z → ∞ the
symmetries corresponding to baryon-baryon channels, namely [51]FS and [33]FS , must appear
with proper coefficients, as given by the following equation derived in Ref. [53]

ψNN =
1

3
| [6]O[33]FS〉 +

2

3
| [42]O[33]FS〉 − 2

3
| [42]O[51]FS〉 (4.44)
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The contribution due to these symmetries must be identical to the contribution of Vχ to
two times the nucleon mass, also calculated with the Hamiltonian (4.1). We have checked that
this is indeed the case. In the total Hamiltonian the contribution of the [411]FS Vχ state tends
to infinity when Z → ∞. Then this state decouples from the rest which is natural because it
does not correspond to an asymptotic baryon-baryon channel. It plays a role at small Z but at
large Z its amplitude in the NN wave function vanishes, similarly to the “hidden color” states.

For comparison we also show in Fig. 4.4 the contribution of the chiral interaction for
SI = 01 of the GBE Model I. For the states |[6]O[33]FS >, |[42]O[33]FS > and |[42]O[411]FS >
it changes little with Z but the state |[42]O[51]FS > brings a contribution with a clear mini-
mum at Z = 0 before it reaches its maximum as the asymptotic value.
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Figure 4.3: The expectation value of the chiral interaction in the cluster model basis, Eq.
(4.3), for SI = 10. The curves are numbered as in Fig. 4.2 and the scale for (3) is also on
the right hand side vertical line. (Model I)

The adiabatic potential drawn in Figs. 4.5 and 4.6 is defined according to Eq. (4.41)
where 〈H〉Z is the lowest eigenvalue resulting from the diagonalization. Note however that
Krel has not yet been subtracted so that V → 0.448 GeV asymptotically instead of zero.
Fig. 4.5 corresponds to SI = 10 and Fig. 4.6 to SI = 01. One can see that the potential is
repulsive at any Z in both sectors.
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Figure 4.4: The same as Fig. 4.3 but for SI = 01.
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Figure 4.5: Comparison of the adiabatic potential for SI = 10, calculated in the cluster
model basis (full curve) and the molecular orbital basis (dashed curve). (Model I)
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Figure 4.6: Same as Fig. 4.5 but for SI = 01.

Our cluster model results can be compared to previous literature based on OGE models.
A typical example for the 3S1 and 1S0 adiabatic potentials can be found in Ref. [32]. The
results are similar to ours. There is a repulsive core but no attractive pocket. However, in
our case, in either bases, the core is about twice higher at Z = 0 and about 0.5 fm wider
than in [32].

Another interesting remark is to see the difference in the Z dependence of potential
calculated in the basis

ψNN =
1

3
| [6]O[33]FS〉 +

2

3
| [42]O[33]FS〉 − 2

3
| [42]O[51]FS〉

ψ∆∆ =

√

4

45
| [6]O[33]FS〉 +

√

16

45
| [42]O[33]FS〉 +

√

25

45
| [42]O[51]FS〉

ψCC =

√

4

5
| [6]O[33]FS〉 −

√

1

5
| [42]O[33]FS〉 (4.45)

and the potential in the same basis but including coupling between different states. The
transformation between the symmetry states |[f ]O[f ′]FS > and the physical states is







ψNN

ψ∆∆

ψCC






= A







|[6]O[33]FS〉
|[42]O[33]FS〉
|[42]O[51]FS〉






(4.46)

where A depends on Z. In Harvey’s transformation [53] A is a constant matrix given by
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A =









1
3

2
3 −2

3
√

4
45

√

16
45

√

25
45

√

4
5

√

1
5 0









(4.47)

In Fig. 4.7 and 4.8 we show the adiabatic potential in the basis (4.45) and in the coupled
channel basis. Obviously the diagonalization lowers the potential. But the important point
here is that the A(Z) matrix defined above depends only slightly on Z and is close to the
constant matrix (4.47). Note finally that the Z dependence is more important in Model I
than in Model II. This confirms Harvey’s definition of the NN wave function.
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Figure 4.7: The adiabatic potential in a 3×3 basis cluster model in the coupled channel case
(dashed curves) and in the pure NN , ∆∆ and CC basis (full curves) for the GBE Model I.
The asymptotic values of the potential for NN and ∆∆ are represented by horizontal lines.
These are 2mN +Krel and 2m∆ +Krel, respectively.

4.5.2 Molecular orbital basis

In the molecular basis the diagonal matrix elements of the kinetic energy are similar to
each other as decreasing functions of Z. As an illustration in Fig. 4.9 we show the expectation
value of the kinetic energy 〈KE〉 corresponding to |33[6]O[33]FS〉 and to the most dominant
state at Z = 0, namely |42+[42]O[51]FS〉 (see Ref. [7]). At finite Z the kinetic energy of
the latter is larger than that of the former because of the presence of the configuration s2p4

with 50 % probability while in the first state this probability is smaller as well as that of the
p6 configuration, as shown by the first and the seventh wave functions of Eqs. (4.40). The
large kinetic energy of the state |42+[42]O[51]FS 〉 is compensated by a large negative value
of 〈Vχ〉 so that this state becomes dominant at small Z in agreement with Ref. [7].
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Figure 4.8: Same as Fig. 4.7 but in the GBE Model II.
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Figure 4.9: The expectation value of the kinetic energy 〈KE〉 for the |[6]O[33]FS〉 (full
curve) and |42+[42]O[51]FS〉 (dashed curve) states for the GBE Model I in the molecular
orbital basis. The latter is the most dominant state at Z = 0 (see text).
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The expectation values of the confinement potential increase with Z becoming linear
beyond Z > 1.5 fm except for the state |33[42]O[51]FS〉 which gives a result very much
similar to the cluster model state

∣

∣R3L3[42]O[51]FS

〉

drawn in Fig. 4.2. Such a behavior
can be understood through the details given later in Subsection 4.6. Due to the similarity to
the cluster model results we do not show here 〈Vconf 〉 explicitly for the molecular orbital basis.
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Figure 4.10: The expectation value of the chiral interaction for the GBE Model I in the
molecular orbital basis for |42+[42]O[51]FS〉 which is the most dominant state at Z = 0. The
dashed curve corresponds to SI = 10 and the full curve to SI = 01.

The expectation value of the chiral interaction either decreases or increases with Z, de-
pending on the state. In Fig. 4.10 we illustrate the case of the |42+[42]O[51]FS〉 state. both
for SI = 10 and SI = 01 sectors in Model I. This state is the dominant component of ψNN

at Z = 0 with a probability of 87 % for SI = 10 and 93 % for SI = 01 [7]. With increasing
Z these probabilities decrease and tend to zero at Z → ∞. In fact in the molecular orbital
basis the asymptotic form of ψNN is also given by Eq. (4.44) inasmuch as r → R and l → L
as indicated below Eq. (4.39).

Adding together these contributions we diagonalize the Hamiltonian of Model I and use its
lowest eigenvalue to obtain the NN potential according to the definition (4.41). The SI = 10
and SI = 01 cases are illustrated in Figs. 4.5 and 4.6 respectively, for a comparison with the
cluster model basis. As shown before, at Z = 0 the repulsion reduces by about 22 % and 25
% in the 3S1 and 1S0 channels respectively when passing from the cluster model basis to the
molecular orbital basis. From Figs. 4.5 and 4.6 and one can see that the molecular orbital
basis has an important effect up to about Z ≈ 1.5 fm giving a lower potential at small values
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of Z. For Z ≈ 1 fm it gives a potential larger by few tens of MeV than the cluster model
potential. However there is no attraction at all in either case.

The Model II gives similar results, the details of which we do not reproduce here. In Figs.
4.11 and 4.12 we give the final results of the adiabatic potential for SI = 10 and SI = 01,
respectively. There is however a difference in the shape of the adiabatic potential. Indeed the
repulsion at small Z is more important in the GBE Model II and the range of the repulsive
core is about 1.5 fm in the GBE Model I compared to 1 fm in the GBE Model II. This indi-
cates that the parametrization of the GBE interactions influence the NN interaction potential.
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Figure 4.11: Comparison of the adiabatic potential for SI = 10, calculated in the cluster
model basis (full curve) and the molecular orbital basis (dashed curve) in the GBE Model II.

As already mentioned, by construction, the molecular orbital basis is richer at Z = 0 [114]
than the cluster model basis. For this reason, at small Z it leads to a lower potential than the
cluster model basis. Within a truncated space this property may not hold beyond some value
of Z. This could be a possible explanation of the fact that the molecular orbital result is
higher than the cluster model result at Z ≈ 1. However by an increase of the Hilbert space one
can possibly bring the molecular potential lower again. In fact we choose the most important
configurations from symmetry arguments [119] based on Casimir operator eigenvalues. These
arguments hold if the interaction is the same for all quarks in the coordinate space. This
is certainly a better approximation for Z = 0 than for larger values of Z. So it means that
other configurations, which have been neglected, may play a role at Z > 0.4 fm. Then, if
added, they could possibly lower the molecular basis result.
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Figure 4.12: Same as Fig. 4.11 but for SI = 01.

As defined before, the quantity Z is the separation distance between two 3q clusters. It
represents the Jacobi relative coordinate between the two nucleons only for large Z. There
we view it as a generator coordinate and the potential we obtain represents the diagonal
kernel appearing in the generator coordinate method (CGM) which can be related to the
diagonal kernel of the resonating group method (see [28]). The resonating group method will
be presented and applied in the next chapter. It leads to non local potentials. However the
adiabatic potentials, here obtained in the two bases, can be compared with each other in an
independent and different way. On can introduce the quadrupole moment of the six-quark
system

q20 =
6
∑

i=1

r2i Y20(r̂i) (4.48)

and treat the square root of its expectation value

〈Q〉 = 〈ψNN |q20|ψNN 〉 (4.49)

as a collective coordinate describing the separation between the two nucleons. Obviously
√

〈Q〉 → Z for large Z.

In Figs. 4.13 and 4.14 we plot 〈Q〉 and
√

〈Q〉 as a function of Z. The results are practically
identical for SI = 10 and SI = 01. Note that

√

〈Q〉 is normalized such as to be identical
to Z at large Z. One can see that the cluster model gives

√

〈Q〉 = 0 at Z = 0, consistent
with the spherical symmetry of the system, while the molecular basis result is

√

〈Q〉 = 0.573
fm at Z = 0, which suggests that the system acquires a small deformation in the molecular
basis. This also means that its r.m.s. radius is larger in the molecular basis.
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Figure 4.13: 〈Q〉 as a function of Z with 〈Q〉 defined by Eq. (4.49) and normalized such as
to be identical to Z2 at large Z. The full line corresponds to the cluster model basis and the
dashed line to the molecular orbital basis. (Model I)

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5

Q
1/

2  (
fm

)

Z (fm)

Figure 4.14:
√

〈Q〉 as a function of Z with 〈Q〉 defined by Eq. (4.49) and normalized as
indicated in the text. The full line corresponds to the cluster model basis and the dashed
line to the molecular orbital basis. (Model I)
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In Figs. 4.15 and 4.16 we plot the adiabatic potentials as a function of
√

〈Q〉 instead of
Z, for SI = 10 and 01 respectively. As

√

〈Q〉 6= 0 at any Z in the molecular orbital basis, the
corresponding potential is shifted to the right and appears above the cluster model potential
at finite values of

√

〈Q〉 but tends asymptotically to the same value. The comparison made
in Figs. 4.15 and 4.16 is meaningful in the context of a Schrödinger type equation where the
local adiabatic potential appears in conjunction with an “effective mass” depending on

√

〈Q〉
also.
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Figure 4.15: Adiabatic potential for SI = 10 as a function of
√

〈Q〉. The full line is the
cluster model result and the dashed line the molecular basis result. (Model I)

4.6 A note on the asymptotic behavior in the molecular or-

bital basis

Asymptotically, the molecular and the cluster basis must lead to the same result. In this
section we study the behavior of the confinement potential in the molecular orbital basis
at large separation distances Z between the centers of two 3q clusters. As an example we
consider the state |42+[42]O[33]FS〉. Through the fractional parentage technique [53, 118] the
six-body matrix elements can be reduced to the calculation of two-body matrix elements.
Using this technique and integrating in the color space one obtains

〈42+[42]O[33]FS |Vconf |42+[42]O[33]FS〉 =
1

40
[22〈ππ|V |ππ〉

+ 76〈σπ|V |σπ〉 + 26〈σπ|V |πσ〉
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− 58〈ππ|V |σσ〉 + 22〈σσ|V |σσ〉] (4.50)

where the right-hand side contains two-body orbital matrix elements. According to Eq. (8)
for Z → ∞ one has

|σ〉 → 1√
2
|R + L〉, |π〉 → 1√

2
|R − L〉 (4.51)
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Figure 4.16: Same as Fig. 4.15 but for SI = 01.

Replacing these asymptotic forms in the above equation one obtains matrix elements
containing the states |R〉 and |L〉. Most of these matrix elements vanish asymptotically. The
only surviving ones are

〈R R|V |R R〉 → a , 〈R L|V |R L〉 → b Z (4.52)

where a and b are some constants. This brings us to the following asymptotic behavior of
the matrix elements in the right-hand side of (4.50)

〈σσ|V |σσ〉 → (a + b Z)/2

〈ππ|V |ππ〉 → (a + b Z)/2

〈σπ|V |σπ〉 → (a + b Z)/2

〈σπ|V |πσ〉 → (a − b Z)/2

〈ππ|V |σσ〉 → (a − b Z)/2 (4.53)
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from which it follows that

〈42+[42]O[33]FS |Vconf |42+[42]O[33]FS〉 → (11 a + 19 b Z)/10 (4.54)

i. e. this matrix element grows linearly with Z at large Z. In a similar manner one can
show that in the confinement matrix element of the state |33[42]O[51]FS〉 the coefficient of
the term linear in Z cancels out so that in this case one obtains a plateau as in Fig. 4.2.

4.7 The middle-range attraction

In principle we expected some attraction at large Z due to the presence of the Yukawa
potential tail in Eq. (4.4). To see the net contribution of this part of the quark-quark in-
teraction we repeated the calculations in the molecular orbital basis by completely removing
the first term - the Yukawa potential part - in Eq. (4.4). The result is shown in Fig. 4.17
for SI = 10 and in Fig. 4.18 for SI = 01. One can see that beyond Z ≈ 1.3 fm the poten-
tial containing the contribution of the Yukawa potential tail is lower that the one with the
Yukawa part removed. But the contribution of the Yukawa potential tail is very small, of the
order of 1-2 MeV. At small values of Z the Yukawa part of (4.4) contributes to increase the
adiabatic potential because it diminishes the attraction in the two body matrix elements.
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Figure 4.17: The adiabatic potential in the molecular orbital basis for SI = 10 in the GBE
Model I. The solid curve is the same as in Fig. 4.5. The dashed curve is the result obtained
by removing the Yukawa part of the quark-quark interaction (4.4).
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Therefore the potential is repulsive everywhere. The missing middle- and long-range at-
traction can in principle be simulated in a simple phenomenological way. For example, in Ref.
[89] this has been achieved at the baryon level. Here we adopt a more consistent procedure
assuming that besides the pseudoscalar meson exchange interaction there exists an additional
scalar, σ-meson exchange interaction between quarks. This is in the spirit of the spontaneous
chiral symmetry breaking mechanism (see Section 3.2.2) on which the GBE model is based.
In that sense the σ-meson is the chiral partner of the pion and it should be considered ex-
plicitly.
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Figure 4.18: The same as Fig. 4.17 but for SI = 01.

But in another language, once the one-pion exchange interaction between quarks is ad-
mitted, one can inquire about the role of at least two-pion exchanges. Recently it was found
[100] that the two-pion exchange also plays a significant role in the quark-quark interaction.
It enhances the effect of the isospin dependent spin-spin component of the one-pion exchange
interaction and reduces up to canceling out its tensor component. Apart from that it gives
rise to a spin independent central component, which averaged over the isospin wave function
of the nucleon it produces an attractive spin independent interaction. These findings also
support the introduction of a scalar (σ-meson) exchange interaction between quarks as an
approximate description of the two-pion exchange loops.

For consistency with the parametrization [43] i. e. the Model I, we consider here a scalar
quark-quark interaction of the form

Vσ(r) =
g2
σ

4π

1

12mimj
{θ(r − r′0)µ

2
σ

e−µσr

r
− 4√

π
α′3 exp(−α′2(r − r′0)

2)}. (4.55)
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where we fixed µσ = 675 MeV and r′0, α
′ and the coupling constant g2

σ/4π are arbitrary
parameters. In order to be effective at middle-range separation between nucleons we expect
this interaction to have r′0 6= r0 and α′ 6= α. Note that the factor 1/mimj has only been
introduced for dimensional reasons. The value of µσ is close to the conventional value (600
MeV) of the σ-meson.

We first looked at the baryon spectrum with the same variational parameters as before.
The only modification is a shift of the whole spectrum which would correspond to taking
V0 ≈ −60 MeV in Eq. (4.2) instead of V0 = 0 as in the parametrization (4.6) of the GBE
Model I.

For the 6q system we performed calculations in the molecular basis, which is more ap-
propriate and easier to handle than the cluster model basis. We found that the resulting
adiabatic potential is practically insensitive to changes in µσ and r′0 but very sensitive to α′.
In Fig. 4.19 we show results for

r′0 = 0.86 fm, α′ = 1.47 fm−1, g2
σ/4π = g2

8/4π (4.56)
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Figure 4.19: The adiabatic potential in the molecular orbital basis for SI = 10 (full curve)
and SI = 01 (dashed curve) with pseudoscalar + scalar quark-quark interaction of Model I.

One can see that Vσ produces indeed an attractive pocket, deeper for SI = 10 than for
01, as it may be for the NN system. The depth of the attraction depends essentially on α′.
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The precise values of the parameters entering Eq. (4.55) should be determined in further
resonating group method calculations as discussed in the next chapter. As mentioned above
the Born-Oppenheimer potential is in fact the diagonal GCM kernel related to the RGM
kernel (see Chapter 5). Note that similar results are obtained with the Model II, as shown
in Fig. 4.20. In this particular case, we take Vσ as follows :

Vσ = −g
2
σq

4π
(
e−µσr

r
− e−Λσr

r
) , (4.57)

consistent with the form (4.7). Our first choice of the parameters is

g2
σq

4π
=
g2
πq

4π
= 1.24, µσ = 600 MeV , Λσ = 830 MeV . (4.58)

The choice of these parameters with µσ = 600 MeV is given only for orientation. In
the next chapter where the agreement with experiment is searched for the bound and the
scattering states of the NN system, we make a more careful choice. The important point here
is that the qualitative results are reasonable, like in the Model I.
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Figure 4.20: The adiabatic potential in the molecular orbital basis for SI = 10 (full curve)
and SI = 01 (dashed curve) with pseudoscalar + scalar quark-quark interaction in the GBE
Model II.
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4.8 Summary

The present chapter represents the preliminary necessary step towards the study of the
NN system. Here we have calculated the NN potential in the adiabatic approximation as
a function of Z, the separation distance between the centers of the two 3q clusters. We
used a constituent quark model where quarks interact via pseudoscalar meson exchange. The
orbital part of the six-quark states was constructed either from cluster model or molecular
orbital single particle states. The latter are more realistic, having the proper axially and
reflectionally symmetries. Also technically they are more convenient. We explicitly showed
that they are important at small values of Z. In particular we found that the NN potential
obtained in the molecular orbital basis has a less repulsive core than the one obtained in
the cluster model basis. However none of the bases leads to an attractive pocket. We have
simulated this attraction by introducing a σ-meson exchange interaction between quarks.

To have a better understanding of the two bases we have also calculated the quadrupole
moment of the 6q system as a function of Z. The results show that in the molecular orbital
basis the system acquires some small deformations at Z = 0. As a function of the quadrupole
moment the adiabatic potential looks more repulsive in the molecular orbital basis than in
the cluster model basis. In this light one might naively expect that the molecular basis will
lead to scattering phase shifts having a more repulsive behavior.

Both Model I and Model II have been used in the derivation of the adiabatic potential.
We showed that the results are very similar even if some small differences appear, in partic-
ular for the shape of the potential. Because the parametrization of the GBE Model II rely
on more realistic grounds, we will not investigate further the Model I.

The present calculations give us an idea about the size and shape of the hard core produced
by the GBE interaction. Except for small values of Z the two bases give rather similar
potentials. Taking Z as a generator coordinate the following step is to perform a dynamical
study. This is the goal of the next chapter where the resonating group method will be used
provided phase shifts to be compared directly to the experiment.





Chapter 5

The Resonating Group Method

In Chapter 4 we have used the adiabatic approximation to study the short-range repulsion
of the NN system in the framework of the GBE model. However a dynamical treatment of
the nucleon-nucleon interaction could not be considered with that method. In this chapter
we shall extend the study of the previous chapter using the resonating group method (RGM)
[138], in order to calculate the nucleon-nucleon scattering phase shifts. Restricting to quark
degrees of freedom and non-relativistic kinematics, the resonating group method which is ap-
propriate to treat the interaction between two composite systems, can be straightforwardly
applied to the study of the baryon-baryon interaction in the quark models. A very important
aspect of the resonating group method is the introduction of non-local effects in the potential.

In this chapter we shall limit ourselves to the use of only the GBE Model II in order to
study the bound state and the low energy scattering of two nucleons. One of our concerns is
to confirm the role of the quark exchange interaction induced by the antisymmetrization on
the short-range repulsion. In order to achieve this goal the resonating group method appears
to be particularly appropriate. In this chapter we shall first present the resonating group
method in the framework of the NN problem for systems composed of quarks. We shall then
apply it to the s-wave scattering of two nucleons. We shall show that the GBE model can
reproduce the short-range repulsive interaction fairly well. In order to calculate the phase
shifts of the NN scattering which can be compared with experiment, we have to include some
middle-range attraction. In the way presented in the previous chapter, this middle-range at-
traction is provided by a σ-exchange potential, a scalar interaction at the quark level. Finally
we incorporate the tensor part of the hyperfine interaction in order to describe the 3S1 phase
shifts.

We shall show that the flavor-spin symmetry of the GBE model can induce a short-range
repulsion comparable to that produced by the OGE model, due to its color-spin symmetry.
A comparison between results obtained in these two models will be provided.
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5.1 The model

In this chapter we shall focus our investigation on the Model II of the GBE Hamilto-
nian presented in the previous chapters. As already mentioned before, the reason of using
the parametrization of the Model II [44], instead of Model I [43], as in the previous work
[119, 7, 8], is that it is more realistic. Its volume integral, i. e. its Fourier transform at ~q = 0,
vanishes, consistently with the quark-pseudoscalar meson vertex proportional to ~σ · ~q λF . In
addition, this interaction does not enhance the quark-quark matrix elements containing 1p
relative motion, as it is the case with the parametrization of the Model I [43]. This point has
been raised in Ref. [120].

In order to eliminate all ambiguities, we recall explicitly the GBE Hamiltonian considered
in this chapter

H =
∑

i

mi +
∑

i=1

p2
i

2mi
−KG +

∑

i<j

Vconf (rij) +
∑

i<j

Vχ(rij) , (5.1)

where KG is the kinetic energy of the center of mass. The linear confining interaction is

Vconf (rij) = −3

8
λc

i · λc
j (C rij + V0) , (5.2)

and the spin-spin component of the GBE interaction in its SUF (3) form is

Vχ(~rij) =

{

3
∑

a=1

Vπ(~rij)λ
a
i λ

a
j

+
7
∑

a=4

VK(~rij)λ
a
i λ

a
j + Vη(~rij)λ

8
i λ

8
j + Vη′(~rij)λ

0
i λ

0
j

}

~σi · ~σj. (5.3)

The interaction (5.3) contains γ = π,K, η, and η′ meson exchange terms and the radial
part of the exchange potential is

Vγ(r) =
g2
γ

4π

1

12mimj
{µ2

γ

e−µγr

r
− Λ2

γ

e−Λγr

r
}, (5.4)

where Λγ = Λ0 + κµγ and the parameters are

g2
πq

4π
=
g2
ηq

4π
= 1.24,

g2
η′q

4π
= 2.7652,

mu,d = 340 MeV, C = 0.77 fm−2,

µπ = 139 MeV, µη = 547 MeV, µη′ = 958 MeV,

Λ0 = 5.82 fm−1, κ = 1.34, V0 = −112 MeV. (5.5)

For a system of u and d quarks only, as in the NN interaction, we recall that the K
exchange does not contribute.
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5.2 The resonating group method

The resonating group method [138] is one of the well established methods used to study
the interaction between two composite systems. It allows to calculate bound state energies
and scattering phase shifts. It has been first applied to nuclear physics in the study of the
nucleus-nucleus interaction [60, 139]. Its application to baryon-baryon systems was initiated
by Oka and Yazaki [87] where the quark structure of the nucleons was assumed. In a baryon-
baryon system, where each baryon is a 3q cluster, it takes explicitly into account the quark
interchange between the two interacting baryons. This comes from the assumption that the
total wave function can be written as

ψ = A
[

Φ χ(~RAB)
]

, (5.6)

where A is an antisymmetrization operator defined below, Φ contains the product of the
internal wave functions of the interacting baryons and χ(~RAB) is the wave function of the
relative motion, depending on the relative coordinate ~RAB between the clusters A and B.

The internal wave function of each cluster has orbital, flavor, spin and color parts. In Φ
the flavor and spin are combined to give a definite total spin S and isospin I so that one has

Φ =
[

φA(~ξA)φB(~ξB)
]

SI
, (5.7)

where ~ξA = (~ξ1, ~ξ2) and ~ξB = (~ξ3, ~ξ4) are the internal coordinates of the clusters A and B :

~ξ1 = ~r1 − ~r2 , ~ξ3 = ~r4 − ~r5 ,

~ξ2 =
~r1 + ~r2 − 2~r3

2
, ~ξ4 =

~r4 + ~r5 − 2~r6
2

,

~RA =
~r1 + ~r2 + ~r3

3
, ~RB =

~r4 + ~r5 + ~r6
3

. (5.8)

The internal wave functions of the clusters φi(ξi), i = A,B are supposed to be known
(see Section 5.2.1). They are totally antisymmetric 3q states in orbital, spin, flavor and color
space. The color part is a [13] singlet when describing N and ∆. Usually the color part
of a 3q state is not written explicitly. The same statement remains valid for the 6q state
which is a [222]C singlet in every channel. The development below is based on the assump-
tion that φi has a simple s3 structure which is reasonable for the non-relativistic GBE models.

The antisymmetrization operator A is defined by

A =
1

10



1 −
3
∑

i=1

6
∑

j=4

Pij



 , (5.9)

where Pij is the permutation operator of the quarks i and j belonging to clusters A(1, 2, 3)
and B(4, 5, 6) respectively. Note that exchanges of more than one particle are redundant in
the present case since the exchange of three particles such as P14P25P36 are interpreted as
the exchange of two baryons, i; e., PAB and the exchanges of two quarks can be expressed as
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the one particle exchanges times PAB . The operator Pij acts in the orbital, flavor, spin and

color space, so it can be written as Pij = P o
ijP

f
ijP

σ
ijP

c
ij where

P f
ij =

1

2
λf

i · λf
j +

1

3
, P σ

ij =
1

2
~σi · ~σj +

1

2
, P c

ij =
1

2
λc

i · λc
j +

1

3
, (5.10)

with λ
f(c)
i the Gell-Mann matrices of SUF (3) (SUC(3)) and ~σi the Pauli matrices.

When one knows the internal wave functions φA and φB from variational principle, the
equation of motion for χ(~RAB) can be obtained in the form

∫

φ+(~ξA)φ+(~ξB)(H − E)A[φ(~ξA)φ(~ξB)χ(~RAB)]d3ξAd
3ξB = 0 , (5.11)

where H is the Hamiltonian of the six-quark system. We introduce the Hamiltonian kernel

H( ~R′, ~R) =

∫

φ+(~ξA)φ+(~ξB)δ( ~R′ − ~RAB)HA[φ(~ξA)φ(~ξB)δ(~R − ~RAB)]d3ξAd
3ξBd

3RAB

= H(d)(~R)δ(~R − ~R′) −H(ex)( ~R′, ~R) , (5.12)

and the normalization kernel

N ( ~R′, ~R) =

∫

φ+(~ξA)φ+(~ξB)δ( ~R′ − ~RAB)A[φ(~ξA)φ(~ξB)δ(~R − ~RAB)]d3ξAd
3ξBd

3RAB

= N (d)(~R)δ(~R − ~R′) −N (ex)( ~R′, ~R) , (5.13)

with H(d)(~R), H(ex)( ~R′, ~R) and N (ex)( ~R′, ~R) defined below. The direct term of the normal-
ization kernel is N (d)(~R) = 1.

On can rewrite (5.11) as

∫

L( ~R′, ~R)χ(~R)d3R = 0 , (5.14)

where

L( ~R′, ~R) = H( ~R′, ~R) − EN ( ~R′, ~R). (5.15)

This is the RGM equation.

The direct term of the Hamiltonian kernel, H(d)(~R), consists of the relative kinetic, the
relative potential and the baryon internal Hamiltonians

H(d)(~R) = −∇2
R

2µ
+ V

(d)
rel (~R) +Hint , (5.16)

where

µ =
3m

2
, (5.17)
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is the reduced mass of the clusters A and B. Then one can write

L( ~R′, ~R) = [−∇2
R

2µ
+ V

(d)
rel (~R) − Erel]δ(~R − ~R′) − [H(ex)( ~R′, ~R) −EN (ex)( ~R′, ~R)] , (5.18)

where
Erel = E −Hint (5.19)

is the energy of the relative motion and H(ex)( ~R′, ~R) and N (ex)( ~R′, ~R) are the contribution
to L( ~R′, ~R) with ~R′ 6= ~R..

There are two important steps in solving this equation. One is to calculate the Hamil-
tonian kernel (5.12) by reducing the six-body matrix elements to two-body matrix elements.
This is discussed in Section 5.2.5. Another step is the discretization of the RGM equation. It
is important both for bound and scattering states. The discretization has been performed by
using the method of Ref. [60] and detailed later in this chapter. First we discuss the orbital
part of the nucleon wave function.

5.2.1 The nucleon wave function

In the RGM approach the wave function of the ground state nucleon must be known.
As indicated above, its orbital part φ is supposed to have an s3 structure. This is a very
good approximation to the exact wave function as seen in Chapter 4. The function φ is fully
symmetric with respect to any permutation of S3 and is chosen of the form

φ =
3
∏

i=1

g(~ri, β) , (5.20)

with g(~ri, β) given by

g(~r, β) = (
1

πβ2
)3/4e

− r2

2β2 . (5.21)

The size parameter β appearing in (5.21) is chosen such as the lowest configurations, s3[3]O
(Eq. 5.20) and sp2[3]O, be minimally mixed in the nucleon wave function. This implies that
the state |N > is stable against the breathing mode oscillations. To this end we impose the
additional condition < N |H|N∗ >= 0 which plays the same role as also does the so-called
stability condition (see Ref.[87])

∂

∂β
〈φ|H|φ〉 = 0 , (5.22)

where H is the Hamiltonian (5.1) written for a 3q system. This condition gives β = 0.437
fm, which we shall use below.
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5.2.2 Bound states

Here we describe the discretization procedure directly applicable to bound states. Ac-
cording to Ref. [60], the relative wave function χ(~R) has been expanded over a finite number
of Gaussians χi centered at ~Ri (i = 1, 2, ...,N) where Ri are points, equally spaced or not,
between the origin and some value of R depending on the range of the interaction. The
expansion is

χ(~R) =
N
∑

i=1

Ciχi(~R) , (5.23)

with

χi(~R) = g(~R − ~Ri,
√

2/3β) = (
3

2πβ2
)3/4e

− 3
4β2 (~R−~Ri)2 . (5.24)

If g(~r, β) is the quark normalized Gaussian wave function (5.21), from the Jacobi trans-
formations (5.8) it follows that the relative wave function has to be expanded in terms of the
Gaussians (5.24) with the size parameter

√

2/3β.

This method can be applied straightforwardly to the bound state problem. The mod-
ification necessary for treating the scattering problem will be explained later, in the next
subsection. The binding energy E and the expansion coefficients Ci are given by the eigen-
values and eigenvectors of the following equation :

N
∑

j=1

HijCj = E
N
∑

j=1

NijCj , (5.25)

where N is the number of Gaussians considered in (5.23). The matrices

Hij =

∫

φ+(~ξA)φ+(~ξB)χ(~RAB − ~Ri)H(1 −A′)[φ(~ξA)φ(~ξB)χ(~RAB − ~Rj)]d
3ξAd

3ξBd
3RAB ,

(5.26)

and

Nij =

∫

φ+(~ξA)φ+(~ξB)χ(~RAB − ~Ri)(1 −A′)[φ(~ξA)φ(~ξB)χ(~RAB − ~Rj)]d
3ξAd

3ξBd
3RAB ,

(5.27)

are obtained from (5.12) and (5.13) respectively. By including the center of mass coordinate
~RG = (~RA + ~RB)/2 with the centre of mass wave function normalized as

∫

g(~RG,
√

1/6β)g(~RG,
√

1/6β)d3RG = 1, (5.28)
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and transforming back from the Jacobi coordinates to ~ri (i = 1, ..., 6), we get the following
formulas

Hij =

∫ 3
∏

k=1

φ+(~rk −
~Ri

2
)

6
∏

k′=4

φ+(~rk′ +
~Ri

2
)HA[

3
∏

l=1

φ(~rl −
~Rj

2
)

6
∏

l′=4

φ(~rl′ +
~Rj

2
)]d3r1...d

3r6 ,

(5.29)

and

Nij =

∫ 3
∏

k=1

φ+(~rk −
~Ri

2
)

6
∏

k′=4

φ+(~rk′ +
~Ri

2
)A[

3
∏

l=1

φ(~rl −
~Rj

2
)

6
∏

l′=4

φ(~rl′ +
~Rj

2
)]d3r1...d

3r6 ,

(5.30)

with φ(~r) ≡ g(~r, β) given by (5.21). These forms are much easier to handle in actual calcula-
tions. They allow to reduce the 6q matrix elements to two-body matrix elements. Moreover
the distances Ri play now the role of a generator coordinate [111] and lead to a better under-
standing of the relation between the resonating group method and the generator coordinate
method [28].

5.2.3 Scattering states

For scattering states the expansion (5.23) holds up to a finite distance R = Rc, depending
on the range of the interaction. Beyond Rc, χ(~R) becomes the usual combination of Hankel
functions containing the S-matrix. Because practical calculations of both bound state and
scattering states are done in terms of partial waves, we first give the partial wave expansion
of Eq. (5.23) in terms of locally peaked wave functions with a definite angular momentum l
and projection m :

χlm(~R) =
N
∑

i=1

C
(l)
i χ

(l)
i (R)Ylm(R̂) , (5.31)

with the explicit form of χ
(l)
i given by

χ
(l)
i (R) = 4π(

3

2πb2
)3/4e−

3
4b2

(R2+R2
i )il(

3

2b2
RRi) , (5.32)

where il is the modified spherical Bessel function [1]. When we treat the scattering problem,
the form (5.32) holds up to R ≤ Rc only. In fact in this case the relative wave function is
expanded in terms of χ̃(l) as

χ(l)(R) =
N
∑

i=1

C
(l)
i χ̃

(l)
i (R) , (5.33)
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where

χ̃
(l)
i (R) = α

(l)
i χ

(l)
i (R) , (R ≤ Rc)

χ̃
(l)
i (R) = h

(−)
l (kR) + S

(l)
i h

(+)
l (kR) , (R ≥ Rc) (5.34)

with χ
(l)
i (R) defined by Eq. (5.32). Note that χ̄

(l)
i (R) and χ

(l)
i (R) are proportional for R ≤ Rc

only. Here k is the wave number k =
√

2µErel/h̄
2 and h

(−)
l and h

(+)
l are spherical Hankel

functions [1]. The coefficients α
(l)
i and S

(l)
i are determined from the continuity of χ̃

(l)
i and its

derivative at R = Rc. The coefficients C
(l)
i of (5.31) are normalized such that

∑N
i=1C

(l)
i = 1.

Then the S-matrix is given in terms of the coefficients C
(l)
i as

S(l) =
N
∑

i=1

C
(l)
i S

(l)
i . (5.35)

The method of determining the expansion coefficients is based on a functional approach
of Oka and Yazaki [87]. One defines the functional J by

J [χl] = S(l) + i
3m

2k

∫

χ(l)(R′)L(l)(R′, R)χ(l)(R)dR′dR , (5.36)

where m is the quark mass.

Noting that CN is eliminated by the condition
∑N

i=1Ci = 1, we make J stationary with
respect to the variation of Ci’s (i = 1, 2, ...,N − 1), to obtain [60]

N−1
∑

j=1

L̃(l)
ij C

(l)
j = M(l)

i (5.37)

with

L̃(l)
ij = K(l)

ij −K(l)
iN −K(l)

Nj + K(l)
NN , (5.38)

and

M(l)
i = K(l)

NN −K(l)
iN , (5.39)

where

K(l)
ij =

∫

χ̃
(l)
i (R′)L(l)(R′, R)χ̃

(l)
j (R)dR′dR , (5.40)

is calculated using Eq. (5.34). Note that this integral is quite tricky because of the difference
between χ̃(l) and χ(l) in the outer part (R > Rc).

Finally we give the convergence criterium of the scattering problem in the framework of
the resonating group method. This criterium, which we use in practical calculation, has been
given by Kamimura [60] in the following form
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∥

∥

∥

∥

∥

3m

2k

N−1
∑

i=1

K(l)
NiC

(l)
i

∥

∥

∥

∥

∥

≪ 1. (5.41)

This will be discussed in Section 5.4.

5.2.4 Coupled channels

The ansatz (5.6) corresponds to the one channel approximation of RGM. Here we consider
more than one channel in order to look to the effect of extra channels on the phase shift.
We start from the observation that the function (5.6) can be written in terms of shell model
configurations with a fixed number N of excitation quanta. The most important shell model
configurations for the NN problem in the framework of the GBE model have been introduced
in the previous chapter in Eq. (4.19). In terms of these shell model configurations, one has
for example for

∣

∣s6[6]O[33]FS
〉

the identity

A
[

φNφNχ(~RNN )0s

]

FS
=

√

10

9

∣

∣

∣s6[6]O[33]FS

〉

, (5.42)

where χ0,s(~R) denotes the 0s-wave harmonic oscillator function. Remember that it is always
assumed that the center of mass motion is removed from the shell-model wave function.

However, the only contribution from the s4p2 shell comes from a fixed superposition of
symmetry states which allows (5.6) to be rewritten as

A
[

φNφNχ(~RNN )2s

]

FS
=

3
√

2

9

∣

∣

∣

∣

∣

(

√

5

6
s52s−

√

1

6
s4p2)[6]O[33]FS

〉

−4
√

2

9

∣

∣

∣s4p2[42]O[33]FS

〉

−4
√

2

9

∣

∣

∣s4p2[42]O[51]FS

〉

. (5.43)

Note that the left hand side contains the 2s-relative motion wave function. This shows
that each channel of the form (5.6) represents a given truncation of the shell-model space.
Therefore a multi-channel treatment is desirable. Extending the ansatz (5.6) to include, be-
sides NN , two new channels, the ∆∆ and a particular “hidden colour” channel CC defined
explicitly later, Shimizu et al. [112] demonstrated that these three channels become linearly
independent. This provides a Hilbert space where the three compact shell-model configura-

tions
∣

∣

∣(
√

5
6s

52s−
√

1
6s

4p2)[6]O[33]FS

〉

,
∣

∣s4p2[42]O[33]FS
〉

and
∣

∣s4p2[42]O[51]FS
〉

are relaxed as

compared to (5.43) and can participate as independent variational configurations when one
applies the coupled channel RGM. Note that the other possible compact 6q configurations
from the s4p2 shell, such as [411]FS , [321]FS and [2211]FS are not taken into account, but we
have already seen in Sections 4.2 and 4.3 that they play only a minor role when one uses the
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GBE interaction.

In the coupled channels RGM, the total wave function (5.6) becomes

ψ =
∑

β

A
[

Φβχβ(~RAB)
]

, (5.44)

where β is a specific channel (here β = NN , ∆∆ or CC), A is the antisymmetrization op-
erator defined above, Φβ contains the product of internal wave functions of the interacting

baryons and χβ(~RAB) is the wave function of the relative motion in the channel β.

In Φβ the flavor and spin are combined to give a definite total spin S and isospin I as
indicated by (5.7), carrying now an extra index β on the left hand side to specify a given
channel. Here the functions φi(ξi), i = A,B are still totally antisymmetric 3q states in or-
bital, spin, flavor and color space. The color part is a [13]C singlet for N and ∆ states and a
[21]C octet for C states.

In this case, based on Eq. (5.44), the RGM equation becomes a system of coupled channel
equations for χβ

∑

β

∫

Lαβ( ~R′, ~R)χβ(~R)d3R =
∑

β

∫

[Hαβ( ~R′, ~R) − ENαβ( ~R′, ~R)]χβ(~R)d3R = 0 .

(5.45)

Usually the normalization kernel Nαβ is not diagonal because of the antisymmetrization.
For a given SI sector one can establish which are the 6q states of (5.7) allowed by the Pauli
principle [53]. If we consider the l = 0 partial waves i. e. we study the 3S1 and 1S0 phase
shifts, then according to [53], the 6q allowed states are NN,∆∆ and CC. The NN and ∆∆
states are easy to define directly from Eq. (5.44). For CC states we adopt the definition of
Ref. [34] which is more appropriate for RGM calculations. This CC state, composed of six
quarks, allows some “color polarization” of the 6q system in the interaction region.

First, because we assume that the orbital part of each nucleon has [3]O symmetry, the
orbital part of the two-nucleon system in a relative s-state is either [6]O or [42]O as first dis-
cussed by Neudatchin et al. [66, 82, 83, 84]. Since the total wave function is antisymmetrized
in the RGM calculation, the state which has [6]O symmetry in the orbital space should be
antisymmetric in spin, isospin and color space. Thus the projection onto the orbital symme-
try [6]O is equivalent to the projection onto an antisymmetric state of spin, isospin and color
since the relative wave function contains an orbital part only. That is why we introduce the
CC state as the linear combination

|CC〉 = α|NN〉 + β|∆∆〉 + γAσfc|∆∆〉 , (5.46)

with the operator Aσfc defined as

Aσfc =
1

10
[1 −

3
∑

i=1

6
∑

j=4

P σ
ijP

f
ijP

c
ij ] , (5.47)
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where P σ
ij ,P

f
ij and P c

ij are the exchange operators in the spin, flavor and color space respec-
tively defined by (5.10). From the orthonormality conditions 〈CC|CC〉 = 1, 〈CC|NN〉 = 0
and 〈CC|∆∆〉 = 0 one can determine the coefficients α, β and γ so that (see Appendix A)

|CC〉 = −
√

5

6
|NN〉 +

1

3
|∆∆〉 − 15

4
Aσfc|∆∆〉 . (5.48)

The important feature in the definition (5.46) of the CC-state is that the eigenvalue of
the color SU(3) Casimir operator is equal to 12 for each 3q cluster. This tells us that C is a
color octet state and thus explains why we call the CC-state a hidden color state. It must
be stressed that C does not have a definite spin and isospin but CC does. Note that at zero
separation between quarks (shell model basis) the CC state above is the same as that intro-
duced by Harvey. The two differ only at finite separation distances. To see the identity with
Harvey’s CC state [53] at zero separation one can combine it with the NN and ∆∆ states
as defined by Eq. (5.44) to get symmetry states of the form |[f ]FS [222]C ; g̃FSC〉 where g̃ is
the representation resulting from the inner product of [f ]FS and [222]C which is conjugate
with the representation g of an orbital state such as to produce a totally antisymmetric 6q
state. Comparing Table 3 of Ref. [34] with that of Harvey’s [53] Table 1 one can see that the
coefficients of this basis transformation are identical which proves the identity of the hidden
color state (5.48) with that of Harvey at R = 0. Note that Harvey’s definition [53] of CC is
more appropriate for the generator coordinate method than for RGM calculations.

5.2.5 Six-body matrix elements

The method to compute the necessary six-body matrix elements is explained here in some
details, using the very simple example of SI = 10 case. In this case the problem is decoupled
in three independent parts, namely the orbital part, the spin-flavor part and the color part.
First we shall present the method used to derive the spin-flavor contribution. Next the orbital
part will be presented. The details on the color part are given in the Appendix A.

We know that for the nucleon, the spin-flavor wave function is given by

ψN =
1√
2
[χρφρ + χλφλ] , (5.49)

where χ and φ are the spin and flavor parts respectively. For the spin parts we have

χρ
1/2 =

1√
2
(↑↓↑ − ↓↑↑) ,

χρ
−1/2 =

1√
2
(↑↓↓ − ↓↑↓) ,

χλ
1/2 =

1√
6
(↑↓↑ + ↓↑↑ −2 ↑↑↓) ,

χλ
−1/2 =

−1√
6
(↑↓↓ + ↓↑↓ −2 ↓↓↑) , (5.50)
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and similarly for the flavor parts with ↑ replaced by u and ↓ replaced by d. Then for the
channel β = NN , the definition (5.7) becomes

ΦSI
NN =

1

2

∑

C
1
2

1
2
S

s1s2sC
1
2

1
2
I

τ1τ2τ [χ
ρ
s1

(1)φρ
τ1(1) + χλ

s1
(1)φλ

τ1(1)][χ
ρ
s2

(2)φρ
τ2(2) + χλ

s2
(2)φλ

τ2(2)] , (5.51)

where S and I are the spin and isospin of the NN system. χ(i) and φ(i) are the spin and
flavor parts of the ith nucleon. For S = Sz = 1 and I = Iz = 0, after inserting the values of
the corresponding Clebsch-Gordan coefficients we have

Φ10
NN =

1

2
√

2
{[χρ

1/2(1)φ
ρ
1/2(1) + χλ

1/2(1)φ
λ
1/2(1)][χ

ρ
1/2(2)φ

ρ
−1/2(2) + χλ

1/2(2)φ
λ
−1/2(2)]

−[χρ
1/2(1)φ

ρ
−1/2(1) + χλ

1/2(1)φ
λ
−1/2(1)][χ

ρ
1/2(2)φ

ρ
1/2(2) + χλ

1/2(2)φ
λ
1/2(2)]} .

(5.52)

At this stage we use MATHEMATICA [142]. We introduce the expressions (5.50) in
(5.52) and the equivalents for the flavor parts. We get a huge expression with 338 terms
depending now on the quantum numbers of the quarks. For an operator O we then get a
linear combination of 3382 = 114244 matrix elements of the form

〈s1s2s3s4s5s6τ1τ2τ3τ4τ5τ6|O|s′1s′2s′3s′4s′5s′6τ ′1τ ′2τ ′3τ ′4τ ′5τ ′6〉 , (5.53)

where si and τi (i = 1, . . . , 6) stand for the spin and isospin projection of the ith quark.
Note that the normal order of particles is implied. Now let us choose for example O =
~σ1 · ~σ3

~λf
1 · ~λf

3 P
σf
36 , which contains the permutation P36. Then we have

〈s1s2s3s4s5s6τ1τ2τ3τ4τ5τ6|~σ1 · ~σ3
~λf

1 · ~λf
3P

σf
36 |s′1s′2s′3s′4s′5s′6τ ′1τ ′2τ ′3τ ′4τ ′5τ ′6〉

= 〈s1s2s3s4s5s6τ1τ2τ3τ4τ5τ6|~σ1 · ~σ3
~λf

1 · ~λf
3 |s′1s′2s′6s′4s′5s′3τ ′1τ ′2τ ′6τ ′4τ ′5τ ′3〉

= 〈s1s3τ1τ3|~σ1 · ~σ3
~λf

1 · ~λf
3 |s′1s′6τ ′1τ ′6〉 δ

s′2
s2δ

s′4
s4 δ

s′5
s5δ

s′3
s6δ

τ ′
2

τ2 δ
τ ′
4

τ4 δ
τ ′
5

τ5 δ
τ ′
3

τ6

= 〈s1s3|~σ1 · ~σ3|s′1s′6〉〈τ1τ3|~λf
1 · ~λf

3 |τ ′1τ ′6〉 δ
s′2
s2 δ

s′4
s4δ

s′5
s5δ

s′3
s6δ

τ ′
2

τ2 δ
τ ′
4

τ4 δ
τ ′
5

τ5 δ
τ ′
3

τ6 . (5.54)

This shows how a six-body matrix element can be reduced to the calculation of two-body
matrix elements. The necessary nonzero two-body matrix elements are

〈↑↑ |~σ1 · ~σ2| ↑↑〉 = 〈↓↓ |~σ1 · ~σ2| ↓↓〉 = 1 ,

〈↑↓ |~σ1 · ~σ2| ↑↓〉 = 〈↓↑ |~σ1 · ~σ2| ↓↑〉 = −1 ,

〈↑↓ |~σ1 · ~σ2| ↓↑〉 = 〈↓↑ |~σ1 · ~σ2| ↑↓〉 = 2 ,

〈uu|~λf
1 · ~λf

2 |uu〉 = 〈dd|~λf
1 · ~λf

2 |dd〉 = 4/3 ,

〈ud|~λf
1 · ~λf

2 |ud〉 = 〈du|~λf
1 · ~λf

2 |du〉 = −2/3 ,

〈ud|~λf
1 · ~λf

2 |du〉 = 〈du|~λf
1 · ~λf

2 |ud〉 = 2 . (5.55)
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MATHEMATICA is then used to compute systematically and analytically the sum of the
114244 terms stemming from Eq. (5.52).

The same procedure is used for all the other matrix elements such as the kinetic energy
and the confinement interaction, for the diagonal (∆∆, CC) and off-diagonal matrix elements
of the coupled channels RGM as well. Details for the coupled channels matrix elements can
be found in Appendix A.

In Tables 5.2 and 5.3 we give the results for the diagonal and off-diagonal matrix elements
of the channels NN , ∆∆ and CC to be used in coupled or uncoupled channel calculations of
the 3S1 and 1S0 phase shifts respectively. Although we apply the SU(3) version of the GBE

model the matrix elements of σi · σj τi · τj and σi · σj τi · τjP fσc
36 needed in SU(2) calculations

are also indicated. In fact they are used in calculating the expectation value of σi · σj λ
8
i · λ8

j

by subtracting them from σi · σj λ
f
i · λf

j because there is no K-meson exchange. Moreover,

the values we found for σi · σj τi · τj and σi · σj τi · τjP fσc
36 can be considered as a validity test

of our method because they are in full agreement with Table 1 of Ref. [108].

Next, we have to compute the two-body matrix element of the orbital part. We decom-
pose the antisymmetrization operator A by factorizing the permutation operator P oσfc

36 into

its orbital P o
36 and spin-flavor-color P σfc

36 part. We then obtain seven distinct ways of ap-
plying the permutation operator P36, illustrated in Fig. 5.1. The first two diagrams come
from the antisymmetrization operator A of (5.9) without permutation (no quark exchange),
the others with the permutation of the quarks. By permutation of the quarks we mean that
two quarks are interchanged between the two clusters during the interaction. In Fig. 5.1
next to its label, the multiplicity of each diagram is indicated : 6 and 9 for diagrams with-
out exchange and 2, 4, 4, 4, 1 for diagrams with exchange. Note that the total number of
diagrams has to be n(n−1)/2 (namely 15 for the 6q problem) both with or without exchange.

All the details of the calculation of theses diagrams are given in the appendices B-F. We
summarize the results in Table 5.1, where the expression of D, E and V are given by

D(~Ri, ~Rj) = e
−

(~Ri−~Rj)2

16β2 ,

E(~Ri, ~Rj) = D(~Ri,−~Rj) = e
−

(~Ri+
~Rj)2

16β2 ,

V (~a) =

(

1√
2πβ

)3
∫

e
− 1

2β2 (~r−~a
2
)2
V (~r)d3r (5.56)

and where ~a is defined in the last column of Table 5.1
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Diagram Orbital matrix element ~a

a D6(~Ri, ~Rj) V (~a12) 0

b D6(~Ri, ~Rj) V (~a14) ~Ri + ~Rj

c D4(~Ri, ~Rj) E
2(~Ri, ~Rj) V (~a12) 0

d D4(~Ri, ~Rj) E
2(~Ri, ~Rj) V (~a14) ~Ri + ~Rj

e D4(~Ri, ~Rj) E
2(~Ri, ~Rj) V (~a13) ~Rj

f D4(~Ri, ~Rj) E
2(~Ri, ~Rj) V (~a16) ~Ri

g D4(~Ri, ~Rj) E
2(~Ri, ~Rj) V (~a36) ~Ri − ~Rj

Table 5.1: Matrix elements of the different diagrams of the Fig. 5.1.

a (6) b (9)

f (4) g (1)

c (2) d (4) e (4)

Figure 5.1: The different diagrams associated to two-quark interaction. The diagram a and
b correspond to interaction without quark permutation, the other diagrams represent the
contribution of the exchange terms. In brackets, next to the label a, ... g, we reproduce the
multiplicity of each diagram.
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α NN NN ∆∆ NN ∆∆ CC

β NN ∆∆ ∆∆ CC CC CC

1 81 0 81 0 0 81

P fσc
36 -1 4 1 -12 24 -63

λc
1.λ

c
2 -2592 0 -2592 0 0 -648

λc
3.λ

c
6 0 0 0 0 0 -1296

λc
1.λ

c
2 P

fσc
36 32 -128 -32 384 -768 72

λc
3.λ

c
6 P

fσc
36 -64 256 64 96 -192 1152

λc
1.λ

c
3 P

fσc
36 32 -128 -32 384 -768 720

λc
1.λ

c
6 P

fσc
36 32 -128 -32 -48 96 720

λc
1.λ

c
4 P

fσc
36 -16 64 16 24 -48 1260

σ1.σ2 τ1.τ2 4860 0 972 0 0 108

σ3.σ6 τ3.τ6 -900 576 1980 0 0 1116

σ1.σ2 τ1.τ2 P
fσc
36 -444 48 12 -720 288 588

σ3.σ6 τ3.τ6 P
fσc
36 708 48 1596 240 672 -1092

σ1.σ3 τ1.τ3 P
fσc
36 132 336 12 -720 288 -420

σ1.σ6 τ1.τ6 P
fσc
36 132 48 12 336 -96 -420

σ1.σ4 τ1.τ4 P
fσc
36 36 -144 -36 228 288 -1260

σ1.σ2 λ
f
1 .λ

f
2 4536 0 1296 0 0 -18

σ3.σ6 λ
f
3 .λ

f
6 -864 576 1584 0 0 1020

σ1.σ2 λ
f
1 .λ

f
2 P

fσc
36 -376 64 16 -672 384 706

σ3.σ6 λ
f
3 .λ

f
6 P

fσc
36 784 32 1520 216 528 -1024

σ1.σ3 λ
f
1 .λ

f
3 P

fσc
36 104 304 16 -672 384 -332

σ1.σ6 λ
f
1 .λ

f
6 P

fσc
36 104 64 16 340 -200 -332

σ1.σ4 λ
f
1 .λ

f
4 P

fσc
36 44 -152 -32 278 164 -1197

σ1.σ2 λ
f,0
1 .λf,0

2 -648 0 648 0 0 -252

σ3.σ6 λ
f,0
3 .λf,0

6 72 0 -792 0 0 -192

σ1.σ2 λ
f,0
1 .λf,0

2 P fσc
36 136 32 8 96 192 236

σ3.σ6 λ
f,0
3 .λf,0

6 P fσc
36 152 -32 -152 -48 -288 136

σ1.σ3 λ
f,0
1 .λf,0

3 P fσc
36 -56 -64 8 96 192 176

σ1.σ6 λ
f,0
1 .λf,0

6 P fσc
36 -56 32 8 8 -208 176

σ1.σ4 λ
f,0
1 .λf,0

4 P fσc
36 16 -16 8 -20 -248 126

factor 1
972

√
5

972
1

972

√
5

972
1

972
1

972

Table 5.2: Matrix elements 〈α|O|β〉 of different operators O for SI = 10.
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α NN NN ∆∆ NN ∆∆ CC

β NN ∆∆ ∆∆ CC CC CC

1 81 0 81 0 0 81

P fσc
36 -1 4 1 -12 24 -63

λc
1.λ

c
2 -2592 0 -2592 0 0 -648

λc
3.λ

c
6 0 0 0 0 0 -1296

λc
1.λ

c
2 P

fσc
36 32 -128 -32 384 -768 72

λc
3.λ

c
6 P

fσc
36 -64 256 64 96 -192 1152

λc
1.λ

c
3 P

fσc
36 32 -128 -32 384 -768 720

λc
1.λ

c
6 P

fσc
36 32 -128 -32 -48 96 720

λc
1.λ

c
4 P

fσc
36 -16 64 16 24 -48 1260

σ1.σ2 τ1.τ2 4860 0 972 0 0 108

σ3.σ6 τ3.τ6 -900 576 1980 0 0 1116

σ1.σ2 τ1.τ2 P
fσc
36 -444 48 12 -720 288 588

σ3.σ6 τ3.τ6 P
fσc
36 708 48 1596 240 672 -1092

σ1.σ3 τ1.τ3 P
fσc
36 132 336 12 -720 288 -420

σ1.σ6 τ1.τ6 P
fσc
36 132 48 12 336 -96 -420

σ1.σ4 τ1.τ4 P
fσc
36 36 -144 -36 228 288 -1260

σ1.σ2 λ
f
1 .λ

f
2 4536 0 1296 0 0 -126

σ3.σ6 λ
f
3 .λ

f
6 -1008 576 1440 0 0 948

σ1.σ2 λ
f
1 .λ

f
2 P

fσc
36 -376 64 16 -672 384 814

σ3.σ6 λ
f
3 .λ

f
6 P

fσc
36 832 32 1568 232 496 -976

σ1.σ3 λ
f
1 .λ

f
3 P

fσc
36 104 304 16 -672 384 -260

σ1.σ6 λ
f
1 .λ

f
6 P

fσc
36 104 64 16 364 -248 -260

σ1.σ4 λ
f
1 .λ

f
4 P

fσc
36 36 -168 -48 298 124 -1155

σ1.σ2 λ
f,0
1 .λf,0

2 -648 0 648 0 0 -468

σ3.σ6 λ
f,0
3 .λf,0

6 -216 0 -1080 0 0 -336

σ1.σ2 λ
f,0
1 .λf,0

2 P fσc
36 136 32 8 96 192 452

σ3.σ6 λ
f,0
3 .λf,0

6 P fσc
36 248 -32 -56 -16 -352 232

σ1.σ3 λ
f,0
1 .λf,0

3 P fσc
36 -56 -64 8 96 192 320

σ1.σ6 λ
f,0
1 .λf,0

6 P fσc
36 -56 32 8 56 -304 320

σ1.σ4 λ
f,0
1 .λf,0

4 P fσc
36 0 -48 -24 20 -328 210

factor 1
972

√
5

972
1

972

√
5

972
1

972
1

972

Table 5.3: Matrix elements 〈α|O|β〉 of different operators O for SI = 01.
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5.3 Results for the phase shifts

5.3.1 The role of the coupled channels

We shall now present our results for the 3S1 and 1S0 scattering phase shifts using the RGM
approach for the GBE model (5.1-5.5) and discuss the role of the coupled channels NN , ∆∆
and CC as introduced in Section 5.2.4. According to Section 5.2.2, the relative wave function
χ(~R) has been expanded over a finite number of equally spaced Gaussians where the peak of
each Gaussian is given by Ri = R0 + i∗ t with R0 = 0.3 fm and t = 0.35 fm (i = 1, ..,N). For
scattering states this expansion holds up to a finite distance R = Rc, where Rc depends on
the range of the interaction. Beyond Rc, χ(~R) is written as the usual combination of Hankel
functions containing the S-matrix (5.35). Then the phase shifts are determined by imposing
the continuity of χ(~R) and of its derivative with respect to R at R = Rc. Either if we take
one, two or three channels namely NN , NN + ∆∆ or NN + ∆∆ + CC we found that a
number of N = 15 Gaussians in the expansion (5.23) is large enough to obtain convergence.
In all cases the result is stable at the matching radius Rc = 4.5 fm. The size parameter of
the Gaussians is fixed at β = 0.437 fm, as obtained from the stability condition (5.22) in the
GBE parametrization (5.5). All relevant two-body matrix elements in color and flavor-spin
are extracted from Tables 5.2 and 5.3.
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Figure 5.2: 3S1 NN scattering phase shift as a function of Elab. The solid line shows the
result for the NN channel only, the dotted line for the NN+∆∆ and the dashed line for the
NN+∆∆+CC coupled channels.
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In Figs. 5.2 and 5.3 we show the phase shifts obtained from one (NN), two (NN + ∆∆)
and three (NN + ∆∆ +CC) coupled channels as a function of the laboratory energy Elab =
2h̄2k2/3m with m = mu,d of (5.5). The negative value of the phase shifts of both 3S1 and
1S0 partial waves reveal the presence of a short-range repulsion in the NN interaction. This
proves that the GBE interaction can explain the short-range repulsion, due to its flavour-spin
quark-quark operator combined with the quark interchange between clusters in the framework
of a dynamical approach. One can see that in the case of pure pseudoscalar exchange, the
addition to NN of the ∆∆ channel alone or of both ∆∆ and CC channels brings a very
small change in the 3S1 and 1S0 phase shifts below 300 MeV, making the repulsion slightly
weaker. The CC channel brings slightly more repulsion than the ∆∆ channel. In fact the
role of CC channels is expected to increase for larger values of the relative momentum k,
or alternatively smaller separation distances between nucleons, where they could bring an
important contribution. Of course, the contribution of the CC channels to the NN phase
shifts vanishes at larger separations because of their color structure. The conclusion regarding
the minor contribution of ∆∆ and CC channels to the phase shifts below 300 MeV is similar
for results based on the OGE model (see for example [34]). Thus for l = 0 waves it is good
enough to perform one channel calculations in the lab energy interval 0-350 MeV.
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Figure 5.3: Same as Fig. 5.2 but for the 1S0 partial wave.

We recall that the pseudoscalar exchange interaction (5.4) contains both a short-range
part, responsible for the repulsion, and a long-range Yukawa-type potential which brings
attraction in the NN potential. In order to see the difference in the amount of repulsion
induced by the GBE and that induced by the OGE interaction we repeated the one chan-
nel (NN) calculations above by removing the Yukawa-type part, inexistent in OGE models.
We compared the resulting phase shifts with those of Fig. 2 of Ref. [34] obtained with an
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OGE interaction parametrized such as to satisfy the stability condition (5.22). We found
that in the GBE model the repulsion is much stronger and corresponds to a hard core ra-
dius rGBE

0 = 0.68 fm (versus rOGE
0 = 0.30 fm) in the 3S1 and rGBE

0 = 0.81 fm (versus
rOGE
0 = 0.35 fm) in the 1S0 partial waves. The radius r0 was extracted from the phase shifts

at small k, which is approximately given by δ = −k r0. This outcome is consistent with the
findings of Ref. [111] where a simplified SU(2) version of the GBE model has been used.
One can also see that the repulsion induced by the GBE interaction in the 3S1 partial wave
is weaker than that induced in the 1S0 partial wave. This is consistent with the previous
chapter where we found that the height of the repulsive core is lower for 3S1 than for 1S0.
Thus the OGE model gives less repulsion than the GBE model. In Ref. [111] the stronger
repulsion induced by the GBE interaction is viewed as a welcome feature in correctly describ-
ing the phase shifts above Elab = 350 MeV. Our present view is somewhat different (see later).

A note of caution is required regarding the removal of the long-range Yukawa part of the
interaction (5.4) with the parametrization (5.5) which contains a rather large coupling con-
stant g2

η′ q
/(4π) = 2.7652. The η

′
-meson exchange is responsible for describing correctly the

∆ − N splitting. If the long-range Yukawa part is removed, the model fails to describe this
splitting because the contribution coming from the second term of (5.4) for γ = η

′
becomes

too large in a 3q system in the parametrization (5.5). We recall that the contribution to N of
the short-range η

′
-meson exchange part is proportional to a factor of 2 and the contribution

to ∆ to a factor -2 [42], which brings ∆ too low and N too high if the Yukawa part is re-
moved. In these circumstances two or three coupled channel calculations become meaningless.
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Figure 5.4: The relative wave function of Eq. (5.57) for the 3S1 partial wave for k = 1 fm−1

obtained in one channel (solid line) and three channels (dashed line) calculations.
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It is also interesting to see the behaviour of the relative wave function χl=0 of Eq. (5.33)
at short distances. Instead of χl=0 it is more appropriate [87] to introduce a renormalized
wave function as

χl=0
α (R) =

∑

β

∫

dR
′
[N l=0

βα (R,R′)]1/2 χl=0
β (R

′
) , (5.57)

where the quantity to be integrated contains the l = 0 component of the norm N .

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3

χ 
(R

)

R (fm)

1 Channel : N1/2

3 Channels : N1/2

Figure 5.5: Same as Fig. 5.4 but for the 1S0 partial wave.

In Figs. 5.4 and 5.5 we show results for the function (5.57) for the 3S1 and 1S0 waves,
respectively, at the relative momentum k = 1 fm−1 both for the one and the three channel
cases. One can see that for R < 1 fm the one and three channel functions are entirely dif-
ferent, in the three channel case a node being present. If the renormalization was made with
the norm N instead of its square, as in Eq. (5.57), no node would have been present. The
existence of a node is related to the presence of the [42]O configuration in the wave func-
tion (see e.g. [119]). Here, whenever it appears, it is due to the cancellation of the positive
and negative components of the wave function, but the lack of a node does not exclude a
repulsive potential. In a renormalized wave function the amplitudes of positive and negative
components change their values depending on the multiplicative factor N or N1/2 so the node
could appear in one renormalization definition but not in the other. On the other hand, as
discussed above, the phase shift changes insignificantly when one goes from one channel to
three channels, and this can also be seen in the asymptotic form of the wave function beyond
R = 1 fm, although in the overlap region the two functions are entirely different. The above
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behaviour of the wave function is very similar to that found in Ref. [111] where no long-range
part is present in the schematic quark-quark potential due to pion exchange.

In Figs. 5.6 we represent the 3S1 and 1S0 phase shifts of Figs. 5.2 and 5.3 together,
in the one channel case (NN) again, with the Yukawa part included. This is to show that
in the GBE model the two phase shifts are very near each other, with δ(3S1) slightly lower
than δ(1S0). Contrary, in OGE calculations, as for example those of Fig. 2 of Ref. [34], one
obtains δ(3S1) > δ(1S0). In calculations based on the OGE model the difference between
the two phase shifts is reduced by the addition of a scalar potential acting at a nucleon level
with a larger attractive strength in the 1S0 channel than in the 3S1 channel [88]. A major
difference between the GBE δ(3S1) and δ(1S0) is expected to appear after the inclusion of a
quark-quark tensor force [124] because this will modify only the 3S1 phase shift.
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Figure 5.6: 3S1 and 1S0 NN scattering phase shifts as a function of the laboratory energy
Elab. The solid and dotted lines show the result corresponding to the GBE model and the
dashed and dot-dashed lines that of the OGE model (see Ref.[34]).

At this stage, our conclusions are :

1. The phase shifts present a behaviour typical for strongly repulsive potentials. We find
that this repulsion, which is induced by the pseudoscalar meson exchange is stronger
than that produced by the OGE interaction.

2. In the 1S0 partial wave the repulsion is stronger than in 3S1 partial wave as our previous
studies suggested.
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3. Our results prove that in the laboratory energy interval 0-350 MeV the one channel
approximation is entirely satisfactory for a GBE model with a hyperfine spin-spin in-
teraction (no σ-meson exchange).

5.3.2 The role of the σ-meson exchange

To describe the scattering data and the deuteron properties, intermediate- and long-
range attraction potentials are necessary. In calculations based on OGE models they were
phenomenologically simulated at the NN level by central and tensor potentials respectively
[88] (see also Ref. [35]). However, for a consistent picture it is desirable to search for the origin
of the attraction at the quark level. Here we incorporate a σ-meson exchange interaction at
the quark level, missing in the original Models I and II, and we study its effect on the 1S0

phase shift. Note that the 1S0 phase shift is not influenced by a tensor potential, contrary to
the 3S1 phase shift. For the σ-meson exchange interaction we choose the following form

Vσ = −g
2
σq

4π
(
e−µσr

r
− e−Λσr

r
) , (5.58)

with parameters discussed below. The introduction of such an interaction is consistent with
the spirit of the GBE model. It simulates the effect of two correlated pions [100]. The good
quality of the baryon spectrum is not destroyed by the addition of this interaction which
essentially leads to an overall shift of the spectrum [122].
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Figure 5.7: 1S0 phase shift for various values of g = g2
σq/4π at fixed µσ = 600 MeV and

Λσ = 830 MeV.
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The sensitivity of the 1S0 phase shift with respect to the coupling constant
g2

σq

4π , the mass
µσ and the cut-off parameter Λσ can be seen from Figs. 5.7-5.9. As expected, the attraction

in the NN potential increases with
g2

σq

4π and hence the value of Elab where the phase shift

changes sign also increases with
g2

σq

4π , as shown in Fig. 5.7. Note that the potential Vσ of
(5.58) remains attractive as long as µσ < Λσ. However µσ cannot be too close to Λσ. As
suggested by Fig. 5.8, the attractive pocket in the NN potential becomes too small for µσ >
650 MeV, making the repulsion dominant and leading to negative phase shifts at all energies,

when
g2

σq

4π = 1.24 and Λσ = 830 MeV.

A large difference between µσ and Λσ is not good either. From Fig. 5.9 one can see that
when Λσ > 950 MeV and µσ = 600 MeV an undesired bound state in the 1S0 phase shift

is accommodated at
g2

σq

4π = 1.24. This is due to the fact that the contribution of the second
term in the right hand side of (5.58) becomes negligible and Vσ brings too much attraction
in the NN potential. In this way we found an optimal set of values

g2
σq

4π
=
g2
πq

4π
= 1.24, µσ = 600 MeV , Λσ = 830 MeV . (5.59)

Applying the stability condition (5.22) to this extended Hamiltonian, the size parameter
of the Gaussians is now β = 0.351 fm. The number of Gaussians as well as their peak posi-
tions are the same as in the GBE model without Vσ.
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As one can see from Fig. 5.10, with these values the theoretical curve gets quite close to
the experimental points without altering the good short-range behaviour, and in particular
the change of sign of the phase shift at Elab ≈ 260 MeV. Thus the addition of a σ-meson
exchange interaction alone leads to a good description of the phase shift in a large enough
energy interval. One can argue that the still existing discrepancy at low energies could pos-
sibly be removed by the coupling of the 5D0 N-∆ channel, suggested by Ref. [130] in the
frame of a hybrid model, containing both gluon and meson exchange at the quark level. To
achieve this coupling, as well as to describe the 3S1 phase shift, the introduction of a tensor
interaction is necessary.

In Fig. 5.11 we show the renormalized wave function obtained from Eq. (5.57) in the
GBE model where the σ-meson exchange potential has been added. The conclusion pre-
sented above are still valid. No node appear if we renormalize the wave function with the
norm N instead of N1/2 and it is only in the three coupled channels that a node is present.
However we observe that, whichever renormalization is chosen, the wave function reaches its
maximum at approximatively 1 fm contrary to 1.5 fm without σ-meson exchange. This is an
immediate consequence of the attraction introduced by the scalar potential (see later). For
convenience in Fig. 5.12 we also plot χl=0(R) ∗ R for the l = 0 wave function, proportional
to sin(kR− δ)/k for large value of R.
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Figure 5.11: The relative wave function of Eq. (5.57) for the 1S0 partial wave for k = 1 fm−1

for the GBE model with the σ-meson exchange potential (5.58) and the parameters (5.59).

Up to now we viewed the σ-meson exchange as coming from the spontaneous chiral sym-
metry breaking. This has led us to take the σ-meson mass as approximately given by
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m2
σ = m2

π + 4m2
q consistent with the PCAC discussion of Section 3.2.3. However, if we

consider that the σ-meson exchange simulates the exchange of two correlated pions, we can
adopt another point of view, namely to take the σ-meson mass mσ = 2 ∗ mπ = 278 MeV.

With this choice, we decided to keep the coupling constant
g2

πq

4π = 1.24. We then adjusted
Λσ to reproduce the change of sign of the 1S0 phase shift at Elab ≈ 260 MeV. We obtained
Λσ = 337 MeV. As one can see in Fig. 5.13 this choice improves the results a lot, still leaving
room for a tensor type coupling of the 5D0 N-∆ channel as discussed above. Interestingly,
we find that the coupled channel NN − ∆∆ − CC RGM calculation is much more effective
now than in the GBE model without σ-meson exchange, and it substantially improves the
low energy scattering region.

In Fig. 5.14 we give the renormalized wave function for the relative momentum k = 1
fm−1 with the new parameters of the σ-meson exchange interaction. The corresponding
phase shift is δ(k = 1) = 28o. We are then in an attractive region and the wave function
is “pulled in” as compared with the sinusoidal wave in the free case. In Fig. 5.15 we give
the relative wave function of χl=0(R) ∗ R for k = 3 fm−1. The phase shift is now negative
δ(k = 3) = −38o, due to the short-range repulsion, which gives a wave function “pushed out”
compared to the free case.
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Figure 5.15: Same as Fig. 5.14 but for k = 3 fm−1.

Now if we compare Figs. 5.12 and 5.15 we see only a very small difference between the
wave functions, where the position of the node is slightly shifted to a larger value of R in the
new parametrization of the σ-meson exchange interaction. The same considerations remain
valid whichever value of the relative momentum k is chosen. We also note that the position
of the node is practically independent of k, as known from the α− α system [103].

The existence of oscillations and nodes in the short distance part of the relative wave
function of the NN system is a consequence of the composite structure of the nucleon. It
happens that some of the 6q states, when antisymmetrized, vanish, i. e. they are Pauli
forbidden. For the NN problem it is easier to see this effect in the context of the shell model
description, developed in Chapter 4. There, the amplitude of some components of the NN
wave function were practically negligible (see Tables 4.3-4.6) which means nearly forbidden.

Taking forbidden states into account, Neudatchin et al. [82] constructed deep potentials
which fit the deuteron properties. In these potentials the forbidden states are unphysical
bound states. Various forms of these deep potentials are available (see e. g. [67]). On the
other hand, phenomenological potentials, like Reid’s soft core potential [98] explain the scat-
tering data through the introduction of a short-range repulsion for l = 0 and other partial
waves. The corresponding wave functions do not posses any node at short distance.

It is a challenge to find out which behaviour is correct for the wave functions. It has
been suggested by Khokhlov et al. [61] that the hard bremsstrahlung pp → ppγ processes,
for example, could provide a test of the quality of the wave function.
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So far we restricted our study of the role played by the σ-meson interaction potential to
the 1S0 phase shift. If the same σ-meson exchange interaction, with the same parametriza-
tion, is used for the 3S1 case, very similar phase shift is obtained as compared to the 1S0 case.
In fact it is impossible to reproduce experimental data as we can see in Fig. 5.16. However,
as already mentioned, we expect the tensor force to provide the necessary contribution in
order to reproduce the experiment. Note that the tensor force does not alter the 1S0 phase
shift as long as we do not change the σ-meson exchange potential.

5.3.3 The role of the tensor force

As we have seen in Chapter 3, the interaction potential (3.37) between the constituent
quarks contains both a spin-spin and a tensor part which, in the broken SUF (3), reads

Vγ(rij) = ~λf
i · ~λf

j

{

V SS
γ (rij)~σi · ~σj + V T

γ (rij)S
T
ij

}

(5.60)

with contributions from the mesons γ = π, η and η′ for the NN interaction and where ST
ij is

given by

ST
ij =

3(~rij · ~σi)(~rij · ~σj)

r2
− ~σi · ~σj . (5.61)
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Figure 5.16: The 3S1 scattering phase shift with σ-meson exchange potential. The solid
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In Model II of the GBE interaction used in this chapter, the spin-spin part of the pseu-
doscalar exchange potential is given by

V SS
γ (rij) =

g2
γ

4π

1

12mimj

{

µ2
γ

e−µγrij

rij
− Λ2

γ

e−Λγrij

rij

}

, (5.62)

expression which is derived with the form factor

F (q2) =

√

√

√

√

Λ2
γ

Λ2
γ + ~q2

. (5.63)

If we use the same form factor (5.63) in the derivation of the tensor potential, we obtain
the following form for the tensor part of the pseudoscalar exchange potential

V T
γ (rij) = Gf

g2
γ

4π

1

12mimj

{

µ2
γ(1 +

3

µγr
+

3

µ2
γr

2
)
e−µγr

r
− Λ2

γ(1 +
3

Λγr
+

3

Λ2
γr

2
)
e−Λγr

r

}

(5.64)

where the dimensionless global factor Gf has been added in order to allow the adjustment of
the strength of this interaction such as to be as close as possible to the experiment [12]. It
would be interesting to analyze the contribution of the “regularized” part of (5.64). That is
why in the following we shall split the tensor potential in the following way

V T
γ (rij) = T1(rij) + T2(rij) , (5.65)

where

T1(r) = Gf

g2
γ

4π

1

12mimj

{

µ2
γ(1 +

3

µγr
+

3

µ2
γr

2
)
e−µγr

r

}

, (5.66)

and the “regularized” part

T2(r) = Gf

g2
γ

4π

1

12mimj

{

−Λ2
γ(1 +

3

Λγr
+

3

Λ2
γr

2
)
e−Λγr

r

}

. (5.67)

All the spin-flavor-color and spatial matrix elements used in the RGM calculations with
the tensor force are detailed in Appendix F. The numerical parameters (see next section) are
very similar to the previous cases, in particular the stability condition is not influenced by
the tensor potential.

In Fig. 5.17 we show the result for 3S1 phase shift for the 3S1 −3D1 coupled RGM calcu-
lation. Note that the contribution to the coupled channel RGM calculation comes only from
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the tensor force (5.64). The σ-meson mass and the cut-off parameter Λσ are chosen the same
as for the 1S0 phase shift : µσ = 278 MeV and Λσ = 337 MeV. If both T1 and T2 are taken
into account an agreement is obtained provided the global factor is Gf = 33. However, we
see in Fig. 5.17 that if we drop the term T2 from the potential (5.64) there is more attraction
induced by the tensor force. Note that in this case (no T2) a global factor of Gf = 22 only
is required to reproduce the experimental data. We conclude that the “regularized” T2 term
decreases the attractive effect of the tensor force, as expected from (5.64).

In order to see the influence of the breaking of the SUF (3) symmetry on the tensor force,
in Fig. 5.18 we show explicitely the contribution to the 3S1 scattering phase shift of the π-,
η- and η’-meson exchange tensor parts of the potential. In this figure, the global factor has
been chosen to reproduce the experimental data when only the π-meson exchange part of
the tensor potential is taken into account. This gives Gf = 37 as compared to Gf = 33 if
η-meson and η’-meson exchange part of the tensor potential are included, as it is the case in
Fig. 5.17. We see that it is the π-meson which give the largest contribution, but both the η
and η’ tensor part increase the attraction. The same conclusion arise in the parametrization
µσ = 600 MeV and Λσ = 830 MeV, but where the global factor has to be taken Gf = 65 [11].
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Up to now we used an approach with the same Vσ of Eq. (5.58) both for 1S0 and 3S1.
However, it is interesting to see how the introduction of a different choice of parameters in
the σ-meson exchange potential for the 3S1 case1 could change the value of the global factor
Gf of Eq. (5.64). To do so, we have chosen the following parametrization : µσ = 278 MeV
and Λσ = 357 MeV which give more attraction than our previous choices. This is illustrated
by the solid line in Fig. 5.19. In order to reproduce the experimental data, the global factor
of the total (T1 + T2) tensor potential has to be adjusted to the value Gf = 12 as shown by
the dashed line of Fig. 5.19. Note that because the σ-meson exchange potential has changed,
the stability condition has to be checked. This leads to the nucleon size parameter β = 0.389
fm which is very close to the previous parametrization, namely µσ = 278 MeV and Λσ = 337
MeV, where β was given by 0.388 fm.

From Figs. 5.16 and 5.19 we conclude that the reproduction the 3S1 scattering phase
shift needs either a very strong tensor force (Gf = 33), keeping the same σ-meson exchange
potential as in the 1S0 case, or a stronger σ-meson exchange potential which would destroy
the 1S0 phase shift, but would only require Gf = 12. The origin of this difficulty could

1A naive observation is that central part of the Reid soft core potential contains a supplementary term
e−2µπr

r
in the 3

S1 potential case as compared to the 1
S0 potential, possibly responsible for a deeper middle-

range attraction in the NN potential associated with the 3
S1 phase shift.
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come from the dominance of the regularized delta-function of the spin-spin potential in the
non-relativistic case. As seen in Chapter 4, the Yukawa-part of the potential is completely
hidden by the regularized term as seen in Fig. 4.17. This regularized term, essential for
baryon spectra, leads to a small size for the nucleon, leaving very little room for middle- and
long-range attraction.
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Figure 5.19: Same as Fig. 5.17 but for Λσ = 357 MeV and Gf = 12.

5.4 General considerations about the numerical parameters

In this section we shall give some information about the stability of the results with the
choice of the numerical parameters. By numerical parameters we understand all the parame-
ters introduced in solving the RGM equation which are not part of the GBE model. Among
these parameters there is the radius Rc representing the range of the interaction, N the num-
ber of locally peaked Gaussians used in the relative wave function expansion (5.23) and the
points Ri, (i = 1, ..., N) corresponding to the centers of the Gaussians.

For the scattering problem, in order to see the stability of the results with the parameters,
we use the following criterium, consistent with (5.41)

∣

∣

∣

∣

∣

∣S(l)
∣

∣

∣− 1
∣

∣

∣≪ 1 , (5.68)

Let us first analyze the influence of the parameter Rc on the scattering results. In Table
5.4 we give the value of the left hand side of (5.68) for various values of Rc in the particular
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case of 1S0 wave when we choose the relative momentum k = 2 fm−1. In Fig. 5.20 we give
the 1S0 phase shift for five values of Rc. Both the table and the figure correspond to the
GBE model without σ-exchange. The other numerical parameters are

N = 16; Ri = R0 + (i− 1) t, (i = 1, ...,N);R0 = 0.3 fm; t = 0.35 fm

Rc (fm)
∣

∣

∣

∣

∣

∣S(0)
∣

∣

∣− 1
∣

∣

∣

3.25 0.08287

3.35 0.01560

3.40 0.01077

3.50 0.00031

4.00 0.00024

4.50 0.00001

5.00 0.00225

5.50 0.03634

Table 5.4: Value of the left hand side of (5.68) for various values of the Rc parameter.
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From Table 5.4 and Fig. 5.20 we can see that for Rc < 3.5 fm the phase shift result does
not converge. We conclude that the region where the interaction between the two nucleons
is effective should go up to 3.5-4.0 fm. Note that for larger values of Rc convergence also
disappears. This is not due to the potential range but rather because of numerical consider-
ations. Indeed in this case we maintain the same parameters Ri and N . This means that for
the inner region, where the Gaussian approximation is used, the relative wave function goes
quickly to zero much bevore Rc. Then, if Rc is chosen too large, numerical problems appear
in the determination of the boundary condition.

The same considerations have been applied to all the others cases (3S1, with or without
σ-exchange, ...). It appears that the choice of Rc = 4.5 fm is always reasonable.

Next we shall examine the influence on the results of the number N of Gaussians. How-
ever, this parameter has to be determined consistently with the points Ri. The reason for this
is quite obvious : we have to cover the whole interaction region with sufficient precision. This
means enough points, but also well distributed in the interaction region. For simplicity, in all
our study, we adopted the equally spaced Gaussians choice for simplicity (Ri = R0+(i−1) t).
The only drawback of this choice is that we have to increase N , the number of Gaussians,
in order to take properly into account all the ranges appearing in the GBE interaction. The
remaining question is then to determinate the step t and maybe the value of R0.

N t (fm)
∣

∣

∣

∣

∣

∣S(0)
∣

∣

∣− 1
∣

∣

∣

10 0.300 0.00001

10 0.350 0.00001

10 0.400 0.00789

15 0.300 0.05812

15 0.350 0.00086

15 0.400 0.00011

20 0.300 0.00004

20 0.350 8.16185

20 0.400 7.60720

Table 5.5: Value of the convergence criterium (5.68) in the scattering problem for the deter-
mination of the number of Gaussians and their positions Ri.

First we take R0 = 0. Moreover we know that the range of the interaction is about 4.5 fm.
Choosing different combinations of N and t covering this region, we obtain different values for
the convergence criterium (5.68). Note that here we are in the case of no bound state which
corresponds to a minimum energy greater than 2mN . The 1S0 results are presented in Table
5.5 and in Fig. 5.21 for k = 2 fm−1 in the GBE model version of this chapter (no σ-exchange).

From Table 5.5 and Fig. 5.21 we conclude that 10 Gaussians is clearly an underestimate
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for reproducing the scattering phase shifts, because we get at least one bound state which is
impossible here. For 20 or more Gaussians we obtain some numerical problems if the step
parameter t is taken too big. This indicates that an appropriate choice for the parameters
could be N = 15 Gaussians with a step of t = 0.35 fm. But other near possibilities could
have been chosen.
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Figure 5.21: 1S0 NN scattering phase shift as a function of Elab for different values of the
parameters N and t.

Taking R0 6= 0 in order to decrease the number of Gaussians, we observe that the scat-
tering results are identical except if R0 is too big. This indicates that the choice of R0 has
to be operated in order to ensure the proper inclusion of the short-range part of the GBE
Hamiltonian. For the particular case 1S0, R0 = 0.3 fm is a good choice.

Finally to give an idea of the effectiveness of the RGM method from numerical point
of view, we show in Table 5.6 the necessary time to calculate the phase shifts in different
situations. These numbers correspond to the case N = 15 Gaussians and the 3S1 channel.
The corresponding platform used here is a PC Athlon 800 MHz running under Linux 2.4 with
glibc 2.1. Except the spin-flavor-color matrix elements, all components of the program has
been written in C++.
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Case time (sec.)

GBE no σ, no tensor 14.7

GBE with σ, no tensor 17.9

GBE no σ, no tensor, coupled channels 29.6

GBE with σ, no tensor, coupled channels 18.9

GBE no σ, with tensor 32.3

GBE with σ, with tensor 31.4

Table 5.6: Computational time of the 3S1 phase shift for different cases. The hardware
configuration is explained in the text.

5.5 Summary

The non-relativistic GBE quark model which has been presented in details in Chapter
3, describes very well the static properties and excitation spectra of a single hadron. In
this chapter we extended the study from a single hadron to two-nucleon systems, employ-
ing the resonating group method (RGM). We recalled and applied it to a six-quark system.
In particular we derived the six-quark matrix elements as combinations of two-body matrix
elements and calculated analytically the integrals in the spin-flavor or color space by use of
Mathematica. The matrix elements contributing to the direct terms are simple but the ones
corresponding to exchange of quarks between clusters are much more involved to calculate.

The RGM is particularly well adapted in the region where two nucleons overlap each other.
There, the internal quark structure of the nucleon is expected to play an important role. An
important feature of the RGM is that the effect of the exchange of quarks between the two
nucleons is treated exactly. In the overlap region the exchange terms are very important.
They contribute to the short- and medium-range parts of the nucleon-nucleon interaction.
We obtained results for the 1S0 and the 3S1 phase shifts which reflects the importance of the
short-range repulsion and the middle- and long-range attraction.

First, we studied the nucleon-nucleon interaction at short distances within the coupled
channels RGM calculation, where the considered channels were NN , ∆∆ and CC. The im-
portant ingredients of the problem considered here were the spin-flavor dependence of the
Goldstone boson interaction and the quark exchange between the two nucleons. We obtained
a short-range repulsion in the nucleon-nucleon system, as it was expected after the prelim-
inary studies of Chapter 4. However, coupled channels improved only slightly the results,
both for the 1S0 and the 3S1 phase shifts. This proved that in the laboratory energy interval
0-350 MeV one-channel approximation is entirely satisfactory for a GBE model, provided the
stability condition was respected and one was far enough for the threshold.

The coupled channel RGM calculations also revealed the role of the Pauli forbidden states
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implying a node in the short-distance part of the relative wave function, depending on the
choice of the renormalization method.

However, to reproduce the scattering data, short-, middle- and long-range interactions
are all necessary. We then incorporated a σ-meson exchange interaction at the quark level,
consistent with the spirit of the GBE model, and studied the effects of its parametrization
on the phase shifts. For the 1S0 case, the attraction induced by the σ-meson interaction lead
to a good description of the experiment. A σ-meson mass chosen equal to µσ = 600 MeV
has been considered as reasonable to reproduce the phase shifts in a large energy interval.
But the result is improved if the σ-meson mass is reduced to 278 MeV. Only small discrep-
ancy remains at small relative momentum. Surprisingly, we found that the coupled channels
NN -∆∆-CC RGM calculations improve the low energy scattering region when a σ-meson
exchange interaction is added to the GBE hyperfine interaction.

For the 3S1 phase shift, in order to reproduce the experimental data, we added a tensor
part to the pseudoscalar-meson exchange potential, consistent with the GBE model and
performed the 3S1-

3D1 coupled channels RGM calculation . We showed how the introduction
of this tensor force provided the necessary contribution to reproduce the 3S1 phase shift. Note
that good results of the 1S0 phase shift are conserved because the tensor force does not play
any role in that case. Subsequently we discussed how the strength of the tensor potential
has to be significantly enlarged in order to reproduce the 3S1 phase shift. Even a change in
the parametrization of the σ-meson exchange potential which leads to more attraction still
implies a strength for the tensor potential one order of magnitude larger than that for the
spin-spin part.



Chapter 6

Conclusions and Perspectives

The objective of this thesis was to derive the nucleon-nucleon (NN) interaction from a
microscopic point of view where we suppose that the nucleon is a composite particle formed
of three constituent quarks so that the NN system can be viewed as a six-quark system.
The quark model we chose to describe the nucleon is the Goldstone boson exchange model,
recently proposed and used in baryon spectroscopy. The GBE model is a constituent quark
model based on a Hamiltonian where the most important characteristics of QCD, namely the
colour confinement and the chiral symmetry are taken into account. This is the only model
which can describe so far the correct order of levels of non-strange and strange light baryons,
and this is due to the flavor-spin dependence of its hyperfine interaction. It is therefore in-
teresting to find out if the GBE Hamiltonian can be as successful in describing the bound
and scattering states of nucleons.

The GBE model has been proposed in 1996 by Glozman and Riska [42] in the frame
of a harmonic oscillator confinement. In the GBE model the gluon exchange hyperfine in-
teraction was completely dropped, leaving in the Hamiltonian only a pseudoscalar meson
exchange. The main argument in doing so is that at the energy considered here, of the order
of 1 GeV, the fundamental degrees of freedom of QCD, gluons and current quarks, have
to be replaced by effective degrees of freedom such as the Goldstone bosons (pseudoscalar
mesons) and constituent quarks, due to the spontaneous breaking of chiral symmetry. In
this sense, there is no need of quark-gluon interaction anymore for describing light hadrons.
The remarkable success of the GBE quark-quark interaction in reproducing the spectra has
been explained as coming from the particular symmetry introduced through the spin-flavor
operator ~σi · ~σj

~λf
i · ~λf

j and by the short-range part of the hyperfine interaction carrying a
proper sign. Several realistic parametrizations of the model have been successively produced
by the Graz group [43, 44, 46, 47, 133, 134] and they led to a closer and closer agreement with
the experiment. This agreement concerns the spectra, the strong decays an the electro-weak
form factors, as it has been described in Chapter 3.
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In the various GBE model parametrizations of the Graz group, either a non-relativistic or
a relativistic kinematic has been used. If for some observables, such as the electroweak form
factors, a relativistic kinematic description is of a crucial importance, the treatment of the
relative motion of two baryons being essentially non-relativistic at the energies we are inter-
ested in, the study of nucleon-nucleon interaction in a non-relativistic model is a reasonable
approach and the first task to achieve. Moreover the study of a six-quark system in a rela-
tivistic approach is very difficult, particularly in a dynamical approach such as the resonating
group method (RGM) used in Chapter 5 of this work, and it is not obvious it could change
the quality of the results. A non-relativistic approach has therefore been adopted in this
thesis, based on a Hamiltonian formed of a kinetic term, a linear color confinement potential
and a hyperfine flavor-spin dependent interaction as presented in details in Chapter 3.

In order to see if the GBE model is able to describe baryon-baryon system, we started by
an exploratory step which consisted in calculating the NN interaction at zero separation be-
tween two nucleons, because the first arising question is whether or not the chiral constituent
quark model is able to produce a short-range repulsion in the NN system. For this purpose,
we diagonalized the corresponding Hamiltonian in a harmonic oscillator basis containing up
to two excitations quanta. In Chapter 4, using the Born-Oppenheimer (adiabatic) approxi-
mation, we obtained an effective internucleon potential between nucleons from the difference
between the lowest eigenvalue of the six-quark Hamiltonian and two times the nucleon (three-
quark) mass calculated in the same model. We found a very strong effective repulsion of the
order of 1 GeV in both 3S1 and 1S0 channels. This repulsion is the effect of the dominance
of the [51]FS symmetry state in the system. As our work is the first one which applies the
GBE model to the NN system, it was interesting to compare our results with those based
on the one-gluon exchange model. We found that the GBE model induces more repulsion at
short-range than the OGE model.

Next we calculated the NN potential in the adiabatic approximation as a function of Z,
the separation distance between the centers of the two three-quark clusters. The orbital part
of the six-quark states was constructed either from cluster model or molecular orbital single
particle states. The latter are more realistic, having the proper axially and reflectionally
symmetries. Also technically they are more convenient. We explicitly showed that they are
important at small values of Z. In particular we found that the NN potential obtained in the
molecular orbital basis has a less repulsive core than the one obtained in the cluster model
basis. The adiabatic approximation led then to the expected NN short-range repulsion. In-
deed, the potential presents a hard core of about 1 GeV height and a radius of roughly 1
fm. However, the adiabatic potential does not present any attractive pocket neither in what
we called Model I nor in Model II. Noting also that none of the bases led to an attractive
pocket, we have introduced a σ-meson exchange interaction between quarks to account for
this attraction. The obtained results confirmed our expectation that a scalar-meson exchange
interaction can reproduce the necessary middle-range attraction.

To have a better understanding of the two bases we have also calculated the quadrupole
moment of the six-quark system as a function of Z. The results show that in the molecular
orbital basis the system acquires some small deformations at Z = 0, and as a function of
the quadrupole moment the adiabatic potential looks more repulsive in the molecular orbital
basis than in the cluster model basis.
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A important conclusion of Chapter 4 is that in the two different versions of the GBE
model the results are very similar. Only small differences appear in the shape of the poten-
tial. The parametrization of Model II, relying on more realistic grounds, has been used in
the next step of our investigations, namely in the dynamical study based on RGM.

The adiabatic approximation calculations gave us an idea about the size and shape of the
hard core produced by the GBE interaction. But within this approximation, comparison with
experiment is only qualitative. That is why, taking Z as a generator coordinate, the following
step has been to perform a dynamical study. That was the goal of the Chapter 5 where the
resonating group method has been used in order to calculate the nucleon-nucleon scattering
phase shifts. Restricting to quark degrees of freedom and non-relativistic kinematics, the
resonating group method is particularly appropriate to treat the interaction between two
composite systems and can straightforwardly be applied to the study of the baryon-baryon
interaction in constituent quark models. A very important aspect of the resonating group
method is the introduction of non-local effects in the potential. Moreover the RGM is par-
ticularly well adapted in the region where the two nucleons overlap and where the internal
quark structure of the nucleon as well as the interchange of quarks between the two nucleons
are expected to play an important role.

The first step in applying the RGM calculation is to achieve the very difficult task of
reducing the six-quark matrix elements to combinations of two-body matrix elements and in
calculating the two-body matrix elements in the color and spin-flavor space as explained in
Appendices A-F. First, we studied the role of coupled channels on the 1S0 and the 3S1 phase
shifts. We considered NN , ∆∆ and CC channels. We showed that the GBE interaction
plus the interchange of quark between two cluster produced a short-range repulsion in the
nucleon-nucleon system, confirming the preliminary studies of Chapter 4. The behaviour of
the 1S0 and the 3S1 phase shifts is indeed typical for a short-range repulsion. However at this
stage, coupled channels improved only slightly the results, both for the 1S0 and the 3S1 phase
shifts. This proved that in the laboratory energy interval 0-350 MeV one-channel approxi-
mation is entirely satisfactory for a GBE model, provided the so-called stability condition is
respected.

However, to reproduce the scattering data, short-, middle- and long-range interactions
are all necessary. Based on the encouraging results obtained in Chapter 4 with the adia-
batic approximation, we then incorporated a σ-meson exchange interaction at the quark
level, consistent with the spirit of the GBE model. We studied in details the effects of its
parametrization on the phase shifts. For the 1S0 case, the attraction induced by the σ-meson
interaction led to a good description of the experiment. The region where the phase shift
changes sign from positive to negative values is very well described. Only small discrepan-
cies survive at small relative momentum. Interestingly, we found that the coupled channels
NN -∆∆-CC RGM calculation improves the low energy scattering region when a σ-meson
exchange interaction is added to the pseudoscalar meson exchange.

For the 3S1 phase shift, we have seen that GBE model with the same σ-meson exchange
interaction as for the 1S0 phase shift, could not reproduce the experimental data. This is quite
natural because the tensor force is still missing. We then added the tensor part stemming
from the pseudoscalar meson exchange, consistent with the GBE model and performed the
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3S1-
3D1 coupled channels RGM calculation . We showed how the introduction of this tensor

force provided the necessary contribution to bind the NN system and to reproduce the 3S1

phase shift. Note also that the good results for the 1S0 phase shift are unchanged because the
tensor force does not play any role in that case. We found that the strength of the tensor force
has to be significantly larger than its spin-spin counterpart in order to reproduce the 3S1 phase
shift. Modifying the parametrization for the σ-meson exchange interaction does not change
the conclusion. The smallest amplifying factor of the tensor has been found to be equal to 12.

Along this thesis we therefore showed how the GBE model extended to a six-quark system
can explain successfully the short-range repulsion for two interacting nucleons. Moreover, by
incorporating a missing middle-range attraction through a σ-meson exchange interaction and
adding a tensor force, both in a consistent manner with the GBE interaction, we have been
able to reproduce the 1S0 and 3S1 phase shifts. Anyhow, the strong tensor force required
to reproduce experimental data could be considered as a drawback. We expect this effect
to come from the dominance of the short-range of the spin-spin interaction potential, in the
non-relativistic case at least. As seen in Chapter 4, the regularized term completely hides
the attraction due to the Yukawa-part of the potential, necessary for the long-range of the
nucleon-nucleon interaction. This causes the regularized term, essential for baryon spectra,
to lead to a small size for the nucleon, leaving very little room for middle- and long-range
attraction.

In this work we intentionally chose a parametrization of the GBE model consistent with
both the strange and non-strange baryon spectra. In a sense this could be seen as a limitation.
However our objective was to reproduce the 1S0 and the 3S1 phase shifts keeping the quality
of the spectra unchanged. Looking for new parametrizations of the GBE model, or extending
the model to include other interactions such as coming from the vector-meson exchange for
example, could be a subsequent task. This could lead to another set of parameters where
the tensor force would be on the same level as the spin-spin interaction. Another extension
for this work should concern the study of the other partial wave scattering phase shifts as
well as the deuteron observables. These are the necessary following steps to conclude about
the performances of the GBE model reproducing the bound and scattering states of the
NN system and the baryon spectra within the same constituent quark model. Finally, with
the present parametrization one can also consider the study of other types of baryon-baryon
systems, including the strange ones, for which theoretical predictions on a microscopic ground
are still needed.



Appendix A

Coupled Channels Matrix Elements

In this appendix we derive the matrix elements needed in the coupled channels RGM
approach. In order to achieve this goal we shall introduce the definition of the |∆∆ > and
|CC > states consistently with the definition (5.52) of |NN >. Then using these definitions
we shall find all the operators appearing in the calculation of the matrix elements. To illus-
trate the procedure we use the example of the SI = 10 case. The method can be directly
extended to the other sectors.

A.1 The definition of the |∆∆ > and |CC > states

In the same way as for the |NN > channel (see Eq. (5.52)), the spin-flavor part of the
|∆∆ > wave function reads

ΦSI
∆∆ =

∑

C
3
2

3
2
S

s1s2sC
3
2

3
2
I

τ1τ2τ [χ
sym
s1

(1)φsym
τ1 (1)][χsym

s2
(2)φsym

τ2 (2)] , (A.1)

with

χsym
3/2 = ↑↑↑ ,

χsym
1/2 =

1√
3
(↑↑↓ + ↑↓↑ + ↓↑↑) ,

χsym
−1/2 =

1√
3
(↑↓↓ + ↓↑↓ + ↓↓↑) ,

χsym
−3/2 = ↓↓↓ , (A.2)

and similarly for the flavor parts with ↑ replaced by u and ↓ replaced by d. In (A.1) S and
I are the spin and isospin of the ∆∆ system, χ(i) and φ(i) are the spin and flavor parts of
the ith ∆. For example for S = Sz = 1 and I = Iz = 0, after inserting the values of the
corresponding Clebsch-Gordan coefficients we get
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For the |CC > state we introduce the following definition

|CC〉 = α|NN〉 + β|∆∆〉 + γAσfc|∆∆〉 , (A.3)

with

Aσfc =
1

10
[1 −

3
∑

i=1

6
∑

j=4

P σ
ijP

f
ijP

c
ij ] , (A.4)

where P σ
ij ,P

f
ij and P c

ij are the exchange operators in the spin, isospin and color space definded
by Eqs. (5.10), respectively. From the orthonormality conditions 〈CC|CC〉 = 1, 〈CC|NN〉 =
0 and 〈CC|∆∆〉 = 0 one can determine the coefficients α, β and γ from the equations

〈CC|CC〉 = α2 + β2 + γ(γ + 2β)〈∆∆|Aσfc|∆∆〉
+2αγ〈NN |Aσfc|∆∆〉 = 1 (A.5)

〈NN |CC〉 = α+ γ〈NN |Aσfc|∆∆〉 = 0 (A.6)

〈∆∆|CC〉 = β + γ〈∆∆|Aσfc|∆∆〉 = 0 (A.7)

Introducing (A.6) and (A.7) in (A.5) we obtain

α2 + β2 + γβ + 1 = 0 (A.8)

Now, using the easy to obtain following results

〈NN |Aσfc|∆∆〉 = −2
√

5

45

〈∆∆|Aσfc|∆∆〉 =
4

45
(A.9)

we get α = 2
√

5
45 γ from (A.6) and β = − 4

45γ from (A.7), which introduced in (A.8) give γ = 15
4 .

Thus the |CC > state is

|CC〉 = −
√

5

6
|NN〉 +

1

3
|∆∆〉 − 15

4
Aσfc|∆∆〉 . (A.10)

This is the definition of |CC > used in Section 5.2.4.
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A.2 The coupled channels matrix elements

For |NN > and |∆∆ > it is easy to see that the antisymmetrization operator introduced

in Eq. (5.6) can be reduced to 1
10

(

1 − 9P oσfc
36

)

. Here we shall first show that we can still
write

A|CC〉 =
1

10

(

1 − 9P oσfc
36

)

|CC〉. (A.11)

which is less trivial. For the two first terms of (A.10) it is obvious. For the last term, because
of the presence of the operator Aσfc, it is a bit more tricky. However, for this last term we
have

A Aσfc|∆∆〉 =
1

10
(1 + 9P o

36)Aσfc|∆∆〉 (A.12)

because Aσfc|∆∆〉 is FSC-antisymmetric, so that the role of A reduces to acting with P o
36

on the orbital part because the orbital part of each ∆ is already symmetric.

On the other hand, we have

(1 − 9P oσfc
36 )Aσfc|∆∆〉 = Aσfc|∆∆〉 − 9P oσfc

36 Aσfc|∆∆〉 , (A.13)

which means that we have to show that

P o
36Aσfc|∆∆〉 = −P oσfc

36 Aσfc|∆∆〉 . (A.14)

As the orbital and the FSC parts are uncoupled, it follows that

P oσfc
36 Aσfc|∆∆〉 = P o

36P
σfc
36 Aσfc|∆∆〉 = P o

36 (−Aσfc|∆∆〉) (A.15)

because Aσfc|∆∆〉 is antisymmetric in FSC, so that (A.14) is proved from which (A.11)
follows.

To solve the RGM, in addition to the NN and ∆∆ diagonal and off-diagonal matrix
elements, we need matrix elements of the type 〈XX|O|CC〉 where XX stands for NN , ∆∆

and CC and O stands for V12, V36, V12P
oσfc
36 , V36P

oσfc
36 , V13P

oσfc
36 , V16P

oσfc
36 and V14P

oσfc
36 .

We then have to calculate (in the SI = 10 case)

〈XX|O|CC〉 = −
√
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6
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24
〈XX|O|∆∆〉 +
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8
〈XX|O

∑
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P σfc
ij |∆∆〉 (A.16)

Let us considered the three possible cases
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• |XX〉 = |NN〉

We get
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where the only unknown term is
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• |XX〉 = |∆∆〉

In the same way, the only unknown term is
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This time we have
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(A.20)

where O+ is the Hermitian conjugate of O.

The four first terms of the last equation of (A.20) can be derived from the previous
cases. It turns out that the only unknown term is

〈∆∆|
∑

i,j

P σfc
ij O+Aσfc|∆∆〉 (A.21)

The matrix elements of the Eqs. (A.18) and (A.19) are computed using a program based
on MATHEMATICA, with similar techniques as those described in Chapter 5. For the Eq.
(A.21) we need to proceed further before using MATHEMATICA. For this we need the
relations



A.2 The coupled channels matrix elements 133
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−O+
klAσfc|Ψ〉 if (k, l) 6= (i, j) ∀i, j, k, l

(A.22)

where the property P σfc
ij Aσfc|Ψ〉 = −Aσfc|Ψ〉 has been used. For example if we consider the

operator O = O12P
σfc
36 , we have O+ = P σfc

36 O12 = O12P
σfc
36 , so in this case

∑

i∈A,j∈B

P σfc
ij O+Aσfc|XAXB〉 = −

∑

i∈A,j∈B

P σfc
ij O12Aσfc|XAXB〉

= (O42 +O51 +O62 +O14 +O15 +O16

+O12 +O12 +O12)Aσfc|XAXB〉

= (3 O12 + 6 O36)Aσfc|XAXB〉 (A.23)

In the same way we get the other operators. The results are gathered in Table A.1. The

last task is then to use the relation Aσfc = 1
10

(

1 − 9 P σfc
36

)

with the usual techniques in

order to obtain the spin-flavor-color matrix elements.

O
∑

i∈A,j∈B P
σfc
ij O+Aσfc|XAXB〉

O12 −(3 O12 + 6 O36)Aσfc|XAXB〉
O36 −(4 O12 + 5 O36)Aσfc|XAXB〉

O12P
σfc
36 (3 O12 + 6 O36)Aσfc|XAXB〉

O36P
σfc
36 (4 O12 + 5 O36)Aσfc|XAXB〉

O13P
σfc
36 (3 O12 + 6 O36)Aσfc|XAXB〉

O16P
σfc
36 (4 O12 + 5 O36)Aσfc|XAXB〉

O14P
σfc
36 (4 O12 + 5 O36)Aσfc|XAXB〉

Table A.1: Expression of
∑

i∈A,j∈B P
σfc
ij O+Aσfc|XAXB〉 for different operators O.





Appendix B

The Norm

In this appendix we calculate the orbital matrix elements of the norm presented in the
Table 5.1 of Chapter 5. In coupled channels RGM, the norm is given by

Nα,β =
1

10

(

< α|1σfc|β >< Ψ6q|Ψ6q > −9 < α|P σfc
36 |β >< Ψ6q|P o

36|Ψ6q >
)

(B.1)

We then have to compute < Ψ6q|Ψ6q > and < Ψ6q|P o
36|Ψ6q > with

|Ψ6q >=
3
∏

k=1

φ(~rk −
~Ri

2
, b)

6
∏

k′=4

φ(~rk′ +
~Ri

2
, b). (B.2)

where φ is the wave function of the individual quark. We introduce

Nd =< Ψ6q|Ψ6q > =

∫

dr31...dr
3
6Ψ

∗
6q(Ri)Ψ6q(Rj)

=
3
∏

k=1

6
∏

k′=4

∫

dr31...dr
3
6φ

∗(~rk −
~Ri

2
, b)φ∗(~rk′ +

~Ri

2
, b)

φ(~rk −
~Rj

2
, b)φ(~rk′ +

~Rj

2
, b)

= (

∫

dr31φ
∗(~r1 −

~Ri

2
, b)φ(~r1 −

~Rj

2
, b))6

= ((
1√
πb

)3
∫

dr3e−
(~r−

~Ri
2

)2

2b2 e−
(~r−

~Rj
2

)2

2b2 )6, (B.3)

and using

− (~r − ~Ri
2 )2

2b2
− (~r − ~Rj

2 )2

2b2
=

−1

b2
((
~Ri − ~Rj

4
)2 + (~r −

~Ri + ~Rj

4
)2) (B.4)

we obtain

135
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Nd = ((
1√
πb

)3e−
1
b2

(
~Ri−~Rj

4
)24π

∫ ∞

0
dr r2e−

r2

b2 )6

= ((
1√
πb

)3e−
1
b2

(
~Ri−~Rj

4
)24π

b3
√
π

4
)6

= (e−
1
b2

(
~Ri−~Rj

4
)2)6

= ∆6(~Ri, ~Rj) (B.5)

where

∆(~Ri, ~Rj) = e−
1
b2

(
~Ri−~Rj

4
)2 . (B.6)

In the same way we have

< Ψ6q|P o
36|Ψ6q > = ∆4(~Ri, ~Rj) ·

∫

dr33φ
∗(~r3 −

~Ri

2
, b)φ(~r3 +

~Rj

2
, b) ·

∫

dr36φ
∗(~r6 +

~Ri

2
, b)φ(~r6 −

~Rj

2
, b). (B.7)

Using

∫

dr33φ
∗(~r3 −

~Ri

2
, b)φ(~r3 +

~Rj

2
, b) = (

1√
πb

)3
∫

dr3e−
(~r−

~Ri
2 )2

2b2 e−
(~r+

~Rj
2 )2

2b2

= (
1√
πb

)3e−
1
b2

(
~Ri+

~Rj
4

)2
∫

dr3e−
r2

b2

= e−
1
b2

(
~Ri+

~Rj
4

)2

= ∆(~Ri,−~Rj), (B.8)

we get

< Ψ6q|P o
36|Ψ6q >= ∆4(~Ri, ~Rj)∆

2(~Ri,−~Rj) = N e(~Ri, ~Rj) (B.9)

with

N e(~Ri, ~Rj) = ∆4(~Ri, ~Rj)∆
2(~Ri,−~Rj) (B.10)

In Tables B.1, B.2 and B.3 we give all the flavor-spin-color matrix elements associated to
the norm calculation.
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α NN NN ∆∆ NN ∆∆ CC

β NN ∆∆ ∆∆ CC CC CC

1 135 0 135 0 0 135

P fσc
36 35 20 5 8 -16 -154

factor 1
135

1
135

1
135

√
10

135

√
10

135
1

135

Table B.1: Matrix elements 〈α|O|β〉 of different operators for (S,I) = (0,0).

α NN NN ∆∆ NN ∆∆ CC

β NN ∆∆ ∆∆ CC CC CC

1 81 0 81 0 0 81

P fσc
36 -1 4 1 -12 24 -63

factor 1
81

√
5

81
1
81

√
5

81
1
81

1
81

Table B.2: Matrix elements 〈α|O|β〉 of different operators for (S,I) = (1,0) and (0,1).

α NN NN ∆∆ NN ∆∆ CC

β NN ∆∆ ∆∆ CC CC CC

1 243 0 243 0 0 243

P fσc
36 31 20 1 320 -3080 -169756

factor 1
243

1
243

1
243

1
243·

√
1486

1
243·

√
1486

1
243·743

Table B.3: Matrix elements 〈α|O|β〉 of different operators for (S,I) = (1,1).





Appendix C

The Kinetic Energy

Here, we calcultate the kinetic energy matrix element used in RGM. There are two dif-
ferent ways to achieve this task.

Method I : The first method is to sum up the kinetic energy of all six quarks, extracting
the center of mass movement only after. This method requires the calculation of single
particle operators only. We first introduce

Tsp =
∑

i

p2
i

2m
=
∑

i

ti (C.1)

where all the quarks are supposed to have the same mass. From (C.1) we still have to extract
TR = 1

2M (
∑

i pi)
2, the center of mass motion, with M =

∑

imi = 6m to get T = Tsp − TR.

Method II : This method takes into account the center of mass movement from the very
beginning, so we have

T =
∑

i

p2
i

2m
− TR =

∑

i

p2
i

2m
− 1

2M
(
∑

i

pi)
2

=
5

12m

∑

i

p2
i −

1

6m

∑

i<j

~pi · ~pj

=
∑

i<j

tij =
∑

i<j

1

12m
(~pi − ~pj)

2 . (C.2)

We then see the presence of the two-body operators

tij =
1

12m
(p2

i + p2
j) −

1

6m
~pi · ~pj (C.3)

The matrix elements to compute are then< Ψ6q|ti|Ψ6q >,< Ψ6q|tiP36|Ψ6q >,< Ψ6q|tij |Ψ6q >

and < Ψ6q|tijP36|Ψ6q > where P36 stands for P oσfc
36 .
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We have

< Ψ6q|tk|Ψ6q > = ∆5(~Ri, ~Rj)
1

2m

∫

dr3kφ
∗(~rk −

~Ri

2
, b)p2

kφ(~rk −
~Rj

2
, b)

= ∆5(~Ri, ~Rj)
1

2m

∫

dr3k ~∇φ∗(~rk −
~Ri

2
, b) · ~∇φ(~rk −

~Rj

2
, b)

= ∆5(~Ri, ~Rj)
1

2m
(

1√
πb

)3
∫

dr3k
1

b4
(~rk −

~Ri

2
) · (~rk −

~Rj

2
) ·

e
−1

2b2
((~rk−

~Ri
2

)2+(~rk−
~Rj
2

)2)

= ∆5(~Ri, ~Rj)
1

2mb4
(

1√
πb

)3
∫

dr3k((~rk −
~Ri + ~Rj

4
)2 − (

~Ri − ~Rj

4
)2) ·

e
−1

b2
((~rk−

~Ri+
~Rj

4
)2+(

~Rj+~Rj
4

)2)

= ∆6(~Ri, ~Rj)
1

2mb4
(

1√
πb

)3
∫

dr3(r2 − (
~Ri − ~Rj

4
)2)e

−r2

b2

= ∆6(~Ri, ~Rj)
4π

2mb4
(

1√
πb

)3
∫ ∞

0
dr(r4e

−r2

b2 − r2(
~Ri − ~Rj

4
)2)e

−r2

b2 )

= ∆6(~Ri, ~Rj)
4π

2mb4
(

1√
πb

)3(
3
√
πb5

8
− (

~Ri − ~Rj

4
)2)

√
πb3

4
)

= ∆6(~Ri, ~Rj)
3

4mb2
(1 − 1

6b2
(
~Ri − ~Rj

2
)2)

= Nd(~Ri, ~Rj)
3

4mb2
(1 − 1

6b2
(
~Ri − ~Rj

2
)2) (C.4)

In the same way, we have

< Ψ6q|tkP36|Ψ6q > = < P σfc
36 > N e(~Ri, ~Rj)

3

4mb2
(1 − 1

6b2
(
~Ri − ~Rj

2
)2) (C.5)

for k = 1, 2, 4, 5, and

< Ψ6q|tkP36|Ψ6q > = < P σfc
36 > N e(~Ri, ~Rj)

3

4mb2
(1 − 1

6b2
(
~Ri + ~Rj

2
)2) (C.6)

for k = 3, 6.

Next, we calculate

< Ψ6q|
−~p1 · ~p2

6m
|Ψ6q > = ∆4(~Ri, ~Rj)

1

6m

∫

dr31dr
3
2φ

∗(~r1 −
~Ri

2
, b)φ∗(~r2 −

~Ri

2
, b) ·

~∇φ(~r1 −
~Rj

2
, b) · ~∇φ(~r2 −

~Rj

2
, b)
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= ∆4(~Ri, ~Rj)
1

6mb4
(

1√
πb

)6
∫

dr31dr
3
2(~r1 −

~Rj

2
, b) · (~r2 −

~Rj

2
, b) ·

e
−1

2b2
((~r1−

~Ri
2

)2+(~r1−
~Rj
2

)2+(~r2−
~Ri
2

)2+(~r2−
~Rj
2

)2) (C.7)

Let us assume ~r = ~r1 −
~Rj

2 and ~t = ~r2 −
~Rj

2 , we get

< Ψ6q|
−~p1 · ~p2

6m
|Ψ6q > = ∆4(~Ri, ~Rj)

1

6mb4
(

1√
πb

)6

∫

dr3dt3~r · ~te
−1

2b2
((~r−

~Ri−~Rj
2

)2+r2+t2+~t−
~Ri−~Rj

2
)2)

= ∆4(~Ri, ~Rj)
1

6mb4
(

1√
πb

)6e
−(~Ri−~Rj)2

4b2 ·
∫

dr3dt3~r · ~te
−1

b2
(r2+t2−(~r+~t)·(

~Ri−~Rj
2

))

= ∆4(~Ri, ~Rj)
1

6mb4
(

1√
πb

)6e
−(~Ri−~Rj)2

4b2 ·
∫

dr3dt3~r · ~te
−1

b2
((~r−

~Ri−~Rj
4

)2+(~t−
~Ri−~Rj

2
)2−

(~Ri−~Rj)2

8
)

(C.8)

If we take ~u = ~r − ~Ri−~Rj

4 and ~v = ~t− ~Ri−~Rj

4 , we obtain

< Ψ6q|
−~p1 · ~p2

6m
|Ψ6q > = ∆6(~Ri, ~Rj)

1

6mb4
(

1√
πb

)6 ·
∫

du3dv3(~u+
~Ri − ~Rj

4
) · (~v +

~Ri − ~Rj

4
)e

−(u2+v2)

b2

= ∆6(~Ri, ~Rj)
1

6mb4
(

1√
πb

)6(

∫

du3dv3~u · ~ve
−(u2+v2)

b2

+

∫

du3dv3
~Ri − ~Rj

4
· (~u+ ~v)e

−(u2+v2)

b2

+

∫

du3dv3(
~Ri − ~Rj

4
)2e

−(u2+v2)

b2 )

= ∆6(~Ri, ~Rj)
1

6mb4
(

1√
πb

)6
∫

du3dv3(
~Ri − ~Rj

4
)2e

−(u2+v2)

b2

= ∆6(~Ri, ~Rj)
1

24mb4
(
~Ri − ~Rj

2
)2

= Nd(~Ri, ~Rj)
1

24mb4
(
~Ri − ~Rj

2
)2 (C.9)
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In the same way, we get

< Ψ6q|
−~p3 · ~p6

6m
|Ψ6q > = −Nd(~Ri, ~Rj)

1

24mb4
(
~Ri − ~Rj

2
)2

< Ψ6q|
−~p1 · ~p2P36

6m
|Ψ6q > = < P σfc

36 > N e(~Ri, ~Rj)
1

24mb4
(
~Ri − ~Rj

2
)2

< Ψ6q|
−~p3 · ~p6P36

6m
|Ψ6q > = − < P σfc

36 > N e(~Ri, ~Rj)
1

24mb4
(
~Ri + ~Rj

2
)2

< Ψ6q|
−~p1 · ~p3P36

6m
|Ψ6q > = < P σfc

36 > N e(~Ri, ~Rj)
1

24mb4
R2

i −R2
j

4

< Ψ6q|
−~p1 · ~p6P36

6m
|Ψ6q > = − < P σfc

36 > N e(~Ri, ~Rj)
1

24mb4
R2

i −R2
j

4

< Ψ6q|
−~p1 · ~p4P36

6m
|Ψ6q > = − < P σfc

36 > N e(~Ri, ~Rj)
1

24mb4
(
~Ri − ~Rj

2
)2 (C.10)

In summary, for the single particle kinetic energy operators, we have three different types
of matrix elements

< Ψ6q|t1|Ψ6q > = Nd(~Ri, ~Rj)
K0

3
(1 − (~Ri − ~Rj)

2

24b2
)

< Ψ6q|t1P36|Ψ6q > = < P σfc
36 > N e(~Ri, ~Rj)

K0

3
(1 − (~Ri − ~Rj)

2

24b2
)

< Ψ6q|t3P36|Ψ6q > = < P σfc
36 > N e(~Ri, ~Rj)

K0

3
(1 − (~Ri + ~Rj)

2

24b2
)

(C.11)

where K0 = 3
4mb2 , and six distinct types of matrix elements for the two-body operators.

These are

< Ψ6q|t12|Ψ6q > = Nd(~Ri, ~Rj)
K0

3

< Ψ6q|t36|Ψ6q > = Nd(~Ri, ~Rj)
K0

3
(1 − (~Ri − ~Rj)

2

12b2
)

< Ψ6q|t12P36|Ψ6q > = < P σfc
36 > N e(~Ri, ~Rj)

K0

3

< Ψ6q|t36P36|Ψ6q > = < P σfc
36 > N e(~Ri, ~Rj)

K0

3
(1 − (~Ri + ~Rj)

2

12b2
)

< Ψ6q|t13P36|Ψ6q > = < P σfc
36 > N e(~Ri, ~Rj)

K0

3
(1 − R2

i

12b2
)

< Ψ6q|t16P36|Ψ6q > = < P σfc
36 > N e(~Ri, ~Rj)

K0

3
(1 −

R2
j

12b2
)

< Ψ6q|t14P36|Ψ6q > = < P σfc
36 > N e(~Ri, ~Rj)

K0

3
(1 − (~Ri − ~Rj)

2

12b2
) (C.12)
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Now, let us project these matrix element on a fixed orbital momentum in the bra and in
the ket. We obtain

< YM
L (Rj)t1Y

M ′∗
L′ (Ri) > = K0e

−αd(R2
i +r2

j )
∫

YM
L (Rj)(e

γd
~Ri·~Rj (1 −

R2
i +R2

j

24b2
)

+eγd
~Ri·~Rj

~Ri · ~Rj

12b2
)YM ′∗

L′ (Ri)dR
3
i dR

3
j

= 4πK0(1 −
R2

i +R2
j

24b2
)e−αd(R2

i +r2
j )(iL(γdRiRj)δ

M,M ′

L,L′

+
πRiRj

9b2

∑

lmm′

∫

YM ′∗
L′ (Ri)Y

M
L (Rj)Y

m∗
l (Ri)Y

m∗
l (Rj) ·

Y m′∗
1 (Rj)Y

m
1 (Ri)il(γdRiRj)dR

3
i dR

3
j )

= 4πK0(1 −
R2

i +R2
j

24b2
)e−αd(R2

i +r2
j ) ·

(iL(γdRiRj)δ
M,M ′

L,L′ +
πRiRj

9b2
X(Ri, Rj)) (C.13)

with

X(Ri, Rj) =
∑

lmm′

∫

YM ′∗
L′ (Ri)Y

M
L (Rj)Y

m∗
l (Ri)Y

m∗
l (Rj)

Y m′∗
1 (Ri)Y

m′∗
1 (Rj)il(γdRiRj)dR

3
i dR

3
j (C.14)

and where the relation

~Ri · ~Rj =
4π

3
RiRj

∑

m

Y m∗
1 (Ri)Y

m
1 (Rj) (C.15)

has been used. Now, based on the relation

Y m
l (θ, φ)Y m′

1 (θ, φ) =
∑

kq

(θ, φ)

√

(2l + 1)2

4π(2k + 1)
Y q

k < l1mm′|k, q >< l100|k, 0 >

=
∑

q

(
√

(2l + 1)3

4π(2l + 3)
Y q

l+1(θ, φ) < l1mm′|l + 1, q >

−
√

3l

4π(2l − 1)
Y q

l−1(θ, φ) < l1mm′|l − 1, q >

)

, (C.16)

the Eq. (C.14) becomes

X(Ri, Rj) =
∑

lmm′qq′

∫

YM ′∗
L′ (Ri)(

√

(2l + 1)3

4π(2l + 3)
Y q

l+1(Ri) < l1mm′|l + 1, q >

−
√

3l

4π(2l − 1)
Y q

l−1(Ri) < l1mm′|l − 1, q >)dR3
i
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∫

YM
L (Rj)(

√

(2l + 1)3

4π(2l + 3)
Y q′∗

l+1(Rj) < l1mm′|l + 1, q′ >

−
√

3l

4π(2l − 1)
Y q′∗

l−1(Rj) < l1mm′|l − 1, q′ >)il(γdRiRj)dR
3
j

=
∑

lmm′q

∫

YM ′∗
L′ (Ri)(

√

(2l + 1)3

4π(2l + 3)
Y q

l+1(Ri) < l1mm′|l + 1, q >

−
√

3l

4π(2l − 1)
Y q

l−1(Ri) < l1mm′|l − 1, q >)dR3
i

(

√

3L

4π(2L+ 1)
< L− 1, 1,m,m′|L,M > iL−1(γdRiRj)δl,L−1

−
√

3(L+ 1)

4π(2L + 1)
< L+ 1, 1,m,m′|L,M > iL+1(γdRiRj)δl,L+1)

=
∑

mm′

3L

4π(2L+ 1)
< L− 1, 1,m,m′|L,M > ·

< L− 1, 1,m,m′|L,M ′ > iL−1(γdRiRj)δL,L′

+
3(L+ 1)

4π(2L+ 1)
< L+ 1, 1,m,m′|L,M > ·

< L+ 1, 1,m,m′|L,M ′ > iL+1(γdRiRj)δL,L′

=

(

3L

4π(2L+ 1)
iL−1(γdRiRj) +

3(L+ 1)

4π(2L + 1)
iL+1(γdRiRj)

)

δM,M ′

L,L′

(C.17)

which finally leads to

< YM
L (Rj)t1Y

M∗′
L′ (Ri) > = 4πK0e

−αd(R2
i +r2

j )

{

(1 −
R2

i +R2
j

24b2
)iL(γdRiRj)

+
RiRj

12b2

(

L

2L+ 1
iL−1(γdRiRj)

+
L+ 1

2L+ 1
iL+1(γdRiRj)

)}

δM,M ′

L,L′ (C.18)

In the same way we get

< YM
L (Rj)t1P36Y

M∗′
L′ (Ri) > = < P σfc

36 > 4πK0e
−αd(R2

i +r2
j )

{

(1 −
R2

i +R2
j

24b2
)iL(γeRiRj)

+
RiRj

12b2

(

L

2L+ 1
iL−1(γeRiRj)

+
L+ 1

2L+ 1
iL+1(γeRiRj)

)}

δM,M ′

L,L′
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< YM
L (Rj)t3P36Y

M∗′
L′ (Ri) > = < P σfc

36 > 4πK0e
−αd(R2

i +r2
j )

{

(1 −
R2

i +R2
j

24b2
)iL(γeRiRj)

−RiRj

12b2

(

L

2L+ 1
iL−1(γeRiRj)

+
L+ 1

2L+ 1
iL+1(γeRiRj)

)}

δM,M ′

L,L′

< YM
L (Rj)t12Y

M∗′
L′ (Ri) > = 4π

K0

3
e−αd(R2

i +r2
j )iL(γdRiRj)δ

M,M ′

L,L′

< YM
L (Rj)t36Y

M∗′
L′ (Ri) > = 4π

K0

3
e−αd(R2

i +r2
j )

{

(1 −
R2

i +R2
j

12b2
)iL(γdRiRj)

+
RiRj

6b2

(

L

2L+ 1
iL−1(γdRiRj)

+
L+ 1

2L+ 1
iL+1(γdRiRj)

)}

δM,M ′

L,L′

< YM
L (Rj)t12P36Y

M∗′
L′ (Ri) > = 4 < P σfc

36 > π
K0

3
e−αd(R2

i +r2
j )iL(γeRiRj)δ

M,M ′

L,L′

< YM
L (Rj)t36P36Y

M∗′
L′ (Ri) > = 4 < P σfc

36 > π
K0

3
e−αd(R2

i +r2
j )

{

(1 −
R2

i +R2
j

12b2
)iL(γeRiRj)

−RiRj

6b2

(

L

2L+ 1
iL−1(γeRiRj)

+
L+ 1

2L+ 1
iL+1(γeRiRj)

)}

δM,M ′

L,L′

< YM
L (Rj)t13P36Y

M∗′
L′ (Ri) > = 4 < P σfc

36 > π
K0

3
e−αd(R2

i +r2
j )iL(γeRiRj)(1 − R2

i

12b2
)δM,M ′

L,L′

< YM
L (Rj)t16P36Y

M∗′
L′ (Ri) > = 4 < P σfc

36 > π
K0

3
e−αd(R2

i +r2
j )iL(γeRiRj)(1 −

R2
j

12b2
)δM,M ′

L,L′

< YM
L (Rj)t14P36Y

M∗′
L′ (Ri) > = 4 < P σfc

36 > π
K0

3
e−αd(R2

i +r2
j )

{

(1 −
R2

i +R2
j

12b2
)iL(γeRiRj)

+
RiRj

6b2

(

L

2L+ 1
iL−1(γeRiRj)

+
L+ 1

2L+ 1
iL+1(γeRiRj)

)}

δM,M ′

L,L′ (C.19)

to be used in conjuction with the matrix elements (C.11-C.12)





Appendix D

The Confinement

In this appendix we derive the matrix elements of the confinement potential given by

VConf (rij) = (
−3

8
λc

i · λc
j)Vconf (rij) , (D.1)

with

Vconf (r) = C rn , (D.2)

where n = 1 for a linear confinement, n = 2 for a quadratic confinement and C is the strength
of the confinement.

For that, we use the two-body potential formula (5.56) given in Chapter 5

< Ψ6q|Vij |Ψ6q >= V (~a)N(~Ri, ~Rj) (D.3)

where

V (~a) = (
1√
2πb

)3
∫

e
−(~r−~a/2)2

2b2 V (~r)d~r (D.4)

with

v12 : ~a = 0

v36 : ~a = ~Ri + ~Rj

v12P36 : ~a = 0

Vij = v36P36 : ~a = ~Ri − ~Rj

v13P36 : ~a = ~Rj

v16P36 : ~a = ~Ri

v14P36 : ~a = ~Ri + ~Rj (D.5)

and where N(~Ri, ~Rj) is either the direct norm (B.5)

Nd(~Ri, ~Rj) =< Ψ6q|Ψ6q >= ∆(~Ri, ~Rj)
6 (D.6)
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given in Appendix B or the exchange part (B.10) of the norm

N e(~Ri, ~Rj) =< Ψ6q|P o
36|Ψ6q >= ∆(~Ri, ~Rj)

4∆(~Ri,−~Rj)
2 (D.7)

Now, for a linear confinement, V (~r) = r Eq. (D.4) becomes

V (~a) = 2π(
1√
2πb

)3e
−a2

8b2

∫ ∞

0
r3e

−r2

2b2 dr

∫ 1

−1
e

−arx

2b2 dx

=
2e

−a2

8b2√
2πab

(

∫ ∞

0
r2e

−r2

2b2
+ ar

2b2 dr − (

∫ ∞

0
r2e

−r2

2b2
− ar

2b2 dr) (D.8)

Let make the change of variables

t = r ± a

2
⇒ dr = dt, (D.9)

which leads to

V (~a) =
2√

2πab
(

∫ ∞

−a
2

(t+
a

2
)2e

−t2

2b2 dt−
∫ ∞

a
2

(t− a

2
)2e

−t2

2b2 dt)

=
2√

2πab
(

∫ a
2

−a
2

(t+
a

2
)2e

−t2

2b2 dt + 2a

∫ ∞

a
2

te
−t2

2b2 dt)

=
2√

2πab
(b3

√
2πerf(

a√
8b

) − ab2e
−a2

8b2 +

√
2πa2b

4
erf(

a√
8b

) + 2ab2e
−a2

8b2 )

=
2

ab
√

2π
((b3 +

a2b

4
)
√

2πerf(
a√
8b

) + ab2e
−a2

8b2 )

=

√

2

π
be

−a2

8b2 +
a2 + 4b2

2a
erf(

a√
8b

) (D.10)

Note the particular case a→ 0 where one obtains the limiting value

V (0) =

√

8

π
b. (D.11)

In the case of a quadratic confinement, V (~r) = r2 Eq. (D.4) becomes

V (~a) = 2π(
1√
2πb

)3e
−a2

8b2

∫ ∞

0
r2e

−r2

2b2 dr

∫ 1

−1
e

−arx

2b2 dx

= 3b2 +
a2

4
(D.12)

If a→ 0, we get

V (0) = 3b2 (D.13)



The Confinement 149

Let us now consider the different cases of Eq. (D.5) for the linear confinement potential.
First we calculate the < VConf (12) > matrix element. In this case ~a = 0, such we obtain

< VConf (12) > = < Ψ6q|v12
(

−3

8
λc

1 · λc
2

)

|Ψ6q >

= <
−3

8
λc

1 · λc
2N

d(~Ri, ~Rj)(
1√
2πb

)3
∫

e
−r2

2b2 Vconf (r)d~r >

= <
−3

8
λc

1 · λc
2 > Nd(~Ri, ~Rj)C

√

8

π
b (D.14)

This correspond to the diagram a of Fig. 5.1. Projecting the relative wave function on a
partial wave L, we have

< YM
L (Rj)VConf (12)Y M ′

L′ (Ri) > = <
−3

8
λc

1 · λc
2 > 4πe−αd(R2

i +R2
j )iL(γdRiRj) ·

C

√

8

π
bδM,M ′

L,L′ . (D.15)

The diagram b of Fig. 5.1 corresponds to < VConf (36) >, defined as above

< VConf (36) >=<
−3

8
λc

3 · λc
6 > Nd(~Ri, ~Rj)(

1√
2πb

)3
∫

e
−(~r−

~Ri+
~Rj

2
)2

2b2 Vconf (r)d~r (D.16)

Here, we need the error function erf(x) defined by

erf(x) =
2x√
π

∫ 1

0
e−y2x2

dy (D.17)

Then

< Vconf(36) > = <
−3

8
λc

3 · λc
6 > Nd(~Ri, ~Rj)C

√

2

π
b(e−

(~Ri+
~Rj)2

8b2

+
(~Ri + ~Rj)

2 + 4b2

4b2

∫ 1

0
e−y2 (~Ri+

~Rj )2

8b2 dy)

= <
−3

8
λc

3 · λc
6 > 4πe−αd(R2

i +R2
j )C

√

2

π
b
∑

lm

Y m
l (Ri)Y

m∗
l (Rj)

(e
−(R2

i
+R2

j
)

8b2 il((γd −
1

4b2
)RiRj) + (1 +

R2
i +R2

j

4b2
)

∫ 1

0
e

−y2(R2
i
+R2

j
)

8b2 il((γd −
y2

4b2
)RiRj)dy

+
4π

6b2

∑

m′
Y m′

1 (Ri)Y
m′∗
1 (Rj)

∫ 1

0
e

−y2(R2
i
+R2

j
)

8b2 il((γd −
y2

4b2
)RiRj)dy)

(D.18)



150 The Confinement

Projecting, we obtain

< YM
L (Rj)VConf (36)Y M ′

L′ (Ri) > = <
−3

8
λc

3 · λc
6 > 4πe−αd(R2

i +R2
j )C

√

2

π
b ·

(e
−(R2

i
+R2

j
)

8b2 iL((γd −
1

4b2
)RiRj)

+(1 +
R2

i +R2
j

4b2
)

∫ 1

0
e

−y2(R2
i
+R2

j
)

8b2 iL((γd −
y2

4b2
)RiRj)dy

+
RiRj

2b2

∫ 1

0
e

−y2(R2
i
+R2

j
)

8b2 (
L

2L+ 1
iL−1((γd −

y2

4b2
)RiRj)

+
L+ 1

2L+ 1
iL+1((γd −

y2

4b2
)RiRj))dy)δ

M,M ′

L,L′ (D.19)

For < VConf (12)P36 >, the diagram c of Fig. 5.1, we have

< VConf (12)P36 > = <
−3

8
λc

1 · λc
2P

σfc
36 > N e(~Ri, ~Rj)C

√

8

π
b (D.20)

After the projection we get

< YM
L (Rj)VConf (12)P36Y

M ′
L′ (Ri) > = <

−3

8
λc

1 · λc
2P

σfc
36 > 4πe−αd(R2

i +R2
j )

iL(γeRiRj)C

√

8

π
bδM,M ′

L,L′ (D.21)

For the diagram g of Fig. 5.1 < VConf (36)P36 > we have

< VConf (36)P36 > = <
−3

8
λc

3 · λc
6P

σfc
36 > 4πe−αd(R2

i +R2
j )C

√

2

π
b
∑

lm

Y m
l (Ri)Y

m∗
l (Rj)

(e
−(R2

i
+R2

j
)

8b2 il((γe +
1

4b2
)RiRj) + (1 +

R2
i +R2

j

4b2
)

∫ 1

0
e

−y2(R2
i
+R2

j
)

8b2 il((γe +
y2

4b2
)RiRj)dy

− 4π

6b2

∑

m′
Y m′

1 (Ri)Y
m′∗
1 (Rj)

∫ 1

0
e

−y2(R2
i
+R2

j
)

8b2 il((γe +
y2

4b2
)RiRj)dy) (D.22)

and for the projection

< YM
L (Rj)VConf (36)P36Y

M ′
L′ (Ri) > = <

−3

8
λc

3 · λc
6P

σfc
36 > 4πe−αd(R2

i +R2
j )C

√

2

π
b
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(e
−(R2

i
+R2

j
)

8b2 iL((γe +
1

4b2
)RiRj)

+(1 +
R2

i +R2
j

4b2
)

∫ 1

0
e

−y2(R2
i
+R2

j
)

8b2 iL((γe +
y2

4b2
)RiRj)dy

−RiRj

2b2

∫ 1

0
e

−y2(R2
i
+R2

j
)

8b2 (
L

2L+ 1
iL−1((γe +

y2

4b2
)RiRj)

+
L+ 1

2L+ 1
iL+1((γe +

y2

4b2
)RiRj))dy)δ

M,M ′

L,L′

Next, for the diagram e of Fig. 5.1,

< VConf (13)P36 > = <
−3

8
λc

1 · λc
3P

σfc
36 > N e(~Ri, ~Rj)C ·

(

√

2

π
be

−R2
j

8b2 +
R2

j + 4b2

2Rj
erf(

Rj√
8b

)) (D.23)

and for the projection, we obtain

< YM
L (Rj)VConf (13)P36Y

M ′
L′ (Ri) > = <

−3

8
λc

1 · λc
3P

σfc
36 > 4πe−αd(R2

i +R2
j )iL(γeRiRj)

C(

√

2

π
be

−R2
j

8b2 +
R2

j + 4b2

2Rj
erf(

Rj√
8b

))δM,M ′

L,L′ .

(D.24)

In the same way, for the diagram f of Fig. 5.1 we have

< VConf (16)P36 > = <
−3

8
λc

1 · λc
6P

σfc
36 > N e(~Ri, ~Rj)C

(

√

2

π
be

−R2
i

8b2 +
R2

i + 4b2

2Ri
erf(

Ri√
8b

)) (D.25)

with its projection

< YM
L (Rj)VConf (16)P36Y

M ′
L′ (Ri) > = <

−3

8
λc

1 · λc
6P

σfc
36 > 4πe−αd(R2

i +R2
j )iL(γeRiRj)

C(

√

2

π
be

−R2
i

8b2 +
R2

i + 4b2

2Ri
erf(

Ri√
8b

))δM,M ′

L,L′

(D.26)

Finally, for the diagram d of Fig. 5.1, we have

< VConf (14)P36 > = <
−3

8
λc

1 · λc
4P

σfc
36 > 4πe−αd(R2

i +R2
j )C

√

2

π
b
∑

lm

Y m
l (Ri)Y

m∗
l (Rj)
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(e
−(R2

i
+R2

j
)

8b2 il((γe −
1

4b2
)RiRj) + (1 +

R2
i +R2

j

4b2
)

∫ 1

0
e

−y2(R2
i
+R2

j
)

8b2 il((γe −
y2

4b2
)RiRj)dy

+
4π

6b2

∑

m′
Y m′

1 (Ri)Y
m′∗
1 (Rj)

∫ 1

0
e

−y2(R2
i
+R2

j
)

8b2 il((γe −
y2

4b2
)RiRj)dy) (D.27)

with

< YM
L (Rj)VConf (14)P36Y

M ′
L′ (Ri) > = <

−3

8
λc

1 · λc
4P

σfc
36 > 4πe−αd(R2

i +R2
j )C

√

2

π
b

(e
−(R2

i
+R2

j
)

8b2 iL((γe −
1

4b2
)RiRj)

+(1 +
R2

i +R2
j

4b2
)

∫ 1

0
e

−y2(R2
i
+R2

j
)

8b2 iL((γe −
y2

4b2
)RiRj)dy

+
RiRj

2b2

∫ 1

0
e

−y2(R2
i
+R2

j
)

8b2 (
L

2L+ 1
iL−1((γe −

y2

4b2
)RiRj)

+
L+ 1

2L+ 1
iL+1((γe −

y2

4b2
)RiRj))dy)δ

M,M ′

L,L′ (D.28)

In Tables D.1, D.2 and D.3 we give all the flavor-spin-color matrix elements associated to
the confinement potential.

α NN NN ∆∆ NN ∆∆ CC

β NN ∆∆ ∆∆ CC CC CC

λc
1.λ

c
2 -1080 0 -1080 0 0 -108

λc
3.λ

c
6 0 0 0 0 0 -648

λc
1.λ

c
2 P

fσc
36 -280 -160 -40 -64 128 260

λc
3.λ

c
6 P

fσc
36 560 320 80 -16 32 380

λc
1.λ

c
3 P

fσc
36 -280 -160 -40 -64 128 494

λc
1.λ

c
6 P

fσc
36 -280 -160 -40 8 -16 548

λc
1.λ

c
4 P

fσc
36 140 80 20 -4 8 581

factor 1
405

1
405

1
405

√
10

405

√
10

405
1

405

Table D.1: Matrix elements 〈α|O|β〉 of different operators O for (S,I) = (0,0).
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α NN NN ∆∆ NN ∆∆ CC

β NN ∆∆ ∆∆ CC CC CC

λc
1.λ

c
2 -2592 0 -2592 0 0 -648

λc
3.λ

c
6 0 0 0 0 0 -1296

λc
1.λ

c
2 P

fσc
36 32 -128 -32 384 -768 72

λc
3.λ

c
6 P

fσc
36 -64 256 64 96 -192 1152

λc
1.λ

c
3 P

fσc
36 32 -128 -32 384 -768 720

λc
1.λ

c
6 P

fσc
36 32 -128 -32 -48 96 720

λc
1.λ

c
4 P

fσc
36 -16 64 16 24 -48 1260

factor 1
972

√
5

972
1

972

√
5

972
1

972
1

972

Table D.2: Matrix elements 〈α|O|β〉 of different operators O for (S,I) = (1,0) and (0,1).

α NN NN ∆∆ NN ∆∆ CC

β NN ∆∆ ∆∆ CC CC CC

λc
1.λ

c
2 -1944 0 -1944 0 0 -420876

λc
3.λ

c
6 0 0 0 0 0 -682344

λc
1.λ

c
2 P

fσc
36 -248 -160 -8 -2560 24640 334532

λc
3.λ

c
6 P

fσc
36 496 320 16 -7840 2560 583196

λc
1.λ

c
3 P

fσc
36 -248 -160 -8 -2560 24640 531038

λc
1.λ

c
6 P

fσc
36 -248 -160 -8 3920 -1280 535412

λc
1.λ

c
4 P

fσc
36 124 80 4 -1960 640 657557

factor 1
729

1
729

1
729

1
729·

√
1486

1
729·

√
1486

1
729·743

Table D.3: Matrix elements 〈α|O|β〉 of different operators O for (S,I) = (1,1).





Appendix E

The Hyperfine Interaction

The derivation of the matrix elements of the hyperfine interaction is very similar to that
of the confinement potential but there are however important differences which come from
the more complicated spatial dependence and the presence of the the spin-flavor operator
instead of a simple color operator. The hyperfine interaction has the form

Vχ(rij) =

{

3
∑

a=1

Vπ(rij)λ
a
i λ

a
j +

7
∑

a=4

VK(rij)λ
a
i λ

a
j + Vη(rij)λ

8
i λ

8
j +

2

3
Vη′(rij)

}

~σi · ~σj (E.1)

where λa are the Gell-Mann flavour matrices, and

Vγ(r) =
g2
γ

4π

1

12mimj

{

µ2
γ

e−µγr

r
− Λ2

γ

e−Λγr

r

}

(E.2)

for γ = π,K, η and η’. In Eq. (E.2), gγ ,mi,mj , µγ and Λγ are the parameters of the model.

Now, if we take V (~r) = e−µr

r in Eq. (D.4) of Appendix D we obtain

V (~a) = 2π(
1√
2πb

)3e
−a2

8b2

∫ ∞

0
re

−r2

2b2
−µr 2b2

ar
(e

ar
2b2 − e

−ar

2b2 )dr

=
2e

−a2

8b2√
2πab

∫ ∞

0
e

−r2

2b2
−(µ− a

2b2
)r − e

−r2

2b2
−(µ+ a

2b2
)rdr

=
2e

−a2

8b2√
2πab

(e
b2

2
(µ− a

2b2
)2
∫ ∞

0
e

−1
2

( r
b
+b(µ− a

2b2
))2 − e

b2

2
(µ+ a

2b2
)2 ·

∫ ∞

0
e

−1
2

( r
b
+b(µ+ a

2b2
))2) (E.3)

and if we make the following change of variable

t =
1√
2
(
r

b
+ b(µ± a

2b2
)) ⇒ dr =

√
2bdt (E.4)

we get
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V (~a) =
2√
πa
e

b2µ2

2 (e
−aµ

2

∫ ∞

b(µ− a
2b2

)
√

2

e−t2dt− e
aµ
2

∫ ∞

b(µ+ a
2b2

)
√

2

e−t2dt)

=
e

b2µ2

2

a
(e

−aµ
2 erfc(

b(µ− a
2b2 )√

2
) − e

aµ
2 erfc(

b(µ+ a
2b2 )√

2
)) (E.5)

Note that if a→ 0, we get

V (0) =

√

2

π

1

b
− µe

µ2b2

2 erfc(
µb√

2
). (E.6)

Similarly to the confinement potential we have to work out the matrix elements of the
seven types of two-body operators associated with diagrams of Fig. 5.1.

For the diagram a of Fig. 5.1 we have

< Vχ(12) > = <
∑

γ

λγ
1λ

γ
2~σ1 · ~σ2N

d(~Ri, ~Rj)(
1√
2πb

)3
∫

e
−r2

2b2 Vγ(r)d~r >

=
8
∑

γ=0

< λγ
1λ

γ
2~σ1 · ~σ2 > Nd(~Ri, ~Rj)(

1√
2πb

)3
∫

e
−r2

2b2 Vγ(r)d~r

=
8
∑

γ=0

< λγ
1λ

γ
2~σ1 · ~σ2 > Nd(~Ri, ~Rj) ·

((µ2
γ − Λ2

γ)

√

2

π

1

b
− µ3

γe
µ2

γb2

2 erfc(
µγb√

2
) + Λ3

γe
Λ2

γ b2

2 erfc(
Λγb√

2
))

(E.7)

where Eq. (E.5) has been used. Now if we project on the Lth partial wave, we obtain

< YM
L (Rj)Vχ(12)Y M ′

L′ (Ri) > =
8
∑

γ=0

< λγ
1λ

γ
2~σ1 · ~σ2 > 4πe−αd(R2

i +R2
j )iL(γdRiRj) ·

((µ2
γ − Λ2

γ)

√

2

π

1

b
− µ3

γe
µ2

γ b2

2 erfc(
µγb√

2
)

+Λ3
γe

Λ2
γb2

2 erfc(
Λγb√

2
))δM,M ′

L,L′ (E.8)

For the case < Vχ(36) >, equivalent to the diagram b of Fig. 5.1,

< Vχ(36) >=
8
∑

γ=0

< λγ
3λ

γ
6~σ3 · ~σ6 > Nd(~Ri, ~Rj)(

1√
2πb

)3
∫

e
−(~r−

~Ri+
~Rj

2
)2

2b2 Vγ(r)d~r (E.9)
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Here we need to do the following approximation of the Vγ(r) potential

Vγ(r) ≈
p
∑

k=1

hk
γe

−r2

ck
γ
2

. (E.10)

This is equivalent to calculate V (~a) with the potential V (~r) = e
−r2

c2

V (~a) = 2π(
1√
2πb

)3e
−a2

8b2

∫ ∞

0
r2e−( 1

2b2
+ 1

c2
)r2 2b2

ar
(e

ar
2b2 − e

−ar

2b2 )dr

= (
c√

c2 + 2b2
)3e

−a2

4(c2+2b2) (E.11)

Doing so, we obtain

< Vχ(36) > =
8
∑

γ=0

< λγ
3λ

γ
6~σ3 · ~σ6 > Nd(~Ri, ~Rj)

p
∑

k=1

hk
γ(

ckγ
√

ckγ
2
+ 2b2

)3e

−(~Ri+
~Rj)2

2(ck
γ
2
+2b2)

=
8
∑

γ=0

< λγ
3λ

γ
6~σ3 · ~σ6 > e−αd(R2

i +R2
j )eγd

~Ri·~Rj ·

p
∑

k=1

hk
γ(

ckγ
√

ckγ
2
+ 2b2

)3e

−(R2
i
+R2

j
)

4(ck
γ
2
+2b2) e

−~Ri·~Rj

2(ck
γ
2
+2b2) (E.12)

The projection leads to

< YM
L (Rj)Vχ(36)Y M ′

L′ (Ri) > =
8
∑

γ=0

< λγ
3λ

γ
6~σ3 · ~σ6 > 4πe−αd(R2

i +R2
j )

p
∑

k=1

hk
γ(

ckγ
√

ckγ
2
+ 2b2

)3 ·

e

−(R2
i
+R2

j
)

4(ck
γ
2
+2b2) iL((γd −

1

2(ckγ
2
+ 2b2)

)RiRj)δ
M,M ′

L,L′ (E.13)

For the diagram c of Fig. 5.1 we have

< Vχ(12)P36 > = <
∑

γ

λγ
1λ

γ
2~σ1 · ~σ2N

e(~Ri, ~Rj)(
1√
2πb

)3
∫

e
−r2

2b2 Vγ(r)d~rP σfc
36 >

=
8
∑

γ=0

< λγ
1λ

γ
2~σ1 · ~σ2P

σfc
36 > N e(~Ri, ~Rj)(

1√
2πb

)3
∫

e
−r2

2b2 Vγ(r)d~r

=
8
∑

γ=0

< λγ
1λ

γ
2~σ1 · ~σ2P

σfc
36 > N e(~Ri, ~Rj) ·
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((µ2
γ − Λ2

γ)

√

2

π

1

b
− µ3

γe
µ2

γ b2

2 erfc(
µγb√

2
) + Λ3

γe
Λ2

γb2

2 erfc(
Λγb√

2
))

(E.14)

And its projection

< YM
L (Rj)Vχ(12)P36Y

M ′
L′ (Ri) > =

8
∑

γ=0

< λγ
1λ

γ
2~σ1 · ~σ2P

σfc
36 > 4πe−αe(R2

i +R2
j )iL(γeRiRj) ·

((µ2
γ − Λ2

γ)

√

2

π

1

b
− µ3

γe
µ2

γb2

2 erfc(
µγb√

2
)

+Λ3
γe

Λ2
γb2

2 erfc(
Λγb√

2
))δM,M ′

L,L′ (E.15)

For the diagram g of Fig. 5.1

< Vχ(36)P36 > =
8
∑

γ=0

< λγ
3λ

γ
6~σ3 · ~σ6P

σfc
36 > N e(~Ri, ~Rj)(

1√
2πb

)3
∫

e
−(~r−

~Ri−~Rj
2 )2

2b2 Vγ(r)d~r

=
8
∑

γ=0

< λγ
3λ

γ
6~σ3 · ~σ6P

σfc
36 > N e(~Ri, ~Rj)

p
∑

k=1

hk
γ(

ckγ
√

ckγ
2
+ 2b2

)3e

−(~Ri−~Rj )2

2(ck
γ
2
+2b2)

=
8
∑

γ=0

< λγ
3λ

γ
6~σ3 · ~σ6P

σfc
36 > e−αe(R2

i +R2
j )eγe ~Ri·~Rj ·

p
∑

k=1

hk
γ(

ckγ
√

ckγ
2
+ 2b2

)3e

−(R2
i
+R2

j
)

4(ck
γ
2
+2b2) e

~Ri·~Rj

2(ck
γ
2
+2b2) , (E.16)

with its projection given by

< YM
L (Rj)Vχ(36)P36Y

M ′
L′ (Ri) > =

8
∑

γ=0

< λγ
3λ

γ
6~σ3 · ~σ6P

σfc
36 > 4πe−αe(R2

i +R2
j ) ·

p
∑

k=1

hk
γ(

ckγ
√

ckγ
2
+ 2b2

)3e

−(R2
i
+R2

j
)

4(ck
γ
2
+2b2) ·

iL((γe +
1

2(ckγ
2
+ 2b2)

)RiRj)δ
M,M ′

L,L′ (E.17)

For < Vχ(13)P36 >, the diagram e of Fig. 5.1,

< Vχ(13)P36 > =
8
∑

γ=0

< λγ
1λ

γ
3~σ1 · ~σ3P

σfc
36 > N e(~Ri, ~Rj)(

1√
2πb

)3
∫

e
−(~r−

~Rj
2

)2

2b2 Vγ(r)d~r
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=
8
∑

γ=0

< λγ
1λ

γ
3~σ1 · ~σ3P

σfc
36 > N e(~Ri, ~Rj) ·

(
µ2

γe
b2µ2

γ
2

Rj
(e

−Rjµγ

2 erfc(
b(µγ − Rj

2b2
)√

2
) − e

Rjµγ

2 erfc(
b(µγ +

Rj

2b2
)√

2
))

−Λ2
γe

b2Λ2
γ

2

Rj
(e

−RjΛγ

2 erfc(
b(Λγ − Rj

2b2 )√
2

))

−e
RjΛγ

2 erfc(
b(Λγ +

Rj

2b2 )√
2

))) (E.18)

and

< YM
L (Rj)Vχ(13)P36Y

M ′
L′ (Ri) > =

8
∑

γ=0

< λγ
1λ

γ
3~σ1 · ~σ3P

σfc
36 > 4πe−αe(R2

i +R2
j )iL(γeRiRj) ·

(
µ2

γe
b2µ2

γ
2

Rj
(e

−Rjµγ

2 erfc(
b(µγ − Rj

2b2
)√

2
) ·

−e
Rjµγ

2 erfc(
b(µγ +

Rj

2b2 )√
2

))

−Λ2
γe

b2Λ2
γ

2

Rj
(e

−RjΛγ

2 erfc(
b(Λγ − Rj

2b2 )√
2

))

−e
RjΛγ

2 erfc(
b(Λγ +

Rj

2b2 )√
2

)))δM,M ′

L,L′ (E.19)

In the same way, for the diagram f of Fig. 5.1

< Vχ(16)P36 > =
8
∑

γ=0

< λγ
1λ

γ
6~σ1 · ~σ6P

σfc
36 > N e(~Ri, ~Rj) ·

(
µ2

γe
b2µ2

γ
2

Ri
(e

−Riµγ
2 erfc(

b(µγ − Ri
2b2

)√
2

) − e
Riµγ

2 erfc(
b(µγ + Ri

2b2
)√

2
))

−Λ2
γe

b2Λ2
γ

2

Ri
(e

−RiΛγ
2 erfc(

b(Λγ − Ri
2b2

)√
2

))

−e
RiΛγ

2 erfc(
b(Λγ + Ri

2b2 )√
2

))) (E.20)

with

< YM
L (Rj)Vχ(16)P36Y

M ′
L′ (Ri) > =

8
∑

γ=0

< λγ
1λ

γ
6~σ1 · ~σ6P

σfc
36 > 4πe−αe(R2

i +R2
j )iL(γeRiRj) ·
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(
µ2

γe
b2µ2

γ
2

Ri
(e

−Riµγ
2 erfc(

b(µγ − Ri
2b2 )√

2
) ·

−e
Riµγ

2 erfc(
b(µγ + Ri

2b2
)√

2
))

−Λ2
γe

b2Λ2
γ

2

Ri
(e

−RiΛγ
2 erfc(

b(Λγ − Ri
2b2

)√
2

))

−e
RiΛγ

2 erfc(
b(Λγ + Ri

2b2 )√
2

)))δM,M ′

L,L′ (E.21)

Finally, for the diagram d of Fig. 5.1

< Vχ(14)P36 > =
8
∑

γ=0

< λγ
1λ

γ
4~σ1 · ~σ4P

σfc
36 > N e(~Ri, ~Rj)

p
∑

k=1

hk
γ(

ckγ
√

ckγ
2
+ 2b2

)3e

−(~Ri+
~Rj)2

2(ck
γ
2
+2b2)

=
8
∑

γ=0

< λγ
1λ

γ
4~σ1 · ~σ4P

σfc
36 > e−αe(R2

i +R2
j )eγe

~Ri·~Rj ·

p
∑

k=1

hk
γ(

ckγ
√

ckγ
2
+ 2b2

)3e

−(R2
i
+R2

j
)

4(ck
γ
2
+2b2) e

−~Ri·~Rj

2(ck
γ
2
+2b2) (E.22)

and

< YM
L (Rj)Vχ(14)P36Y

M ′
L′ (Ri) > =

8
∑

γ=0

< λγ
1λ

γ
4~σ1 · ~σ4P

σfc
36 > 4πe−αe(R2

i +R2
j ) ·

p
∑

k=1

hk
γ(

ckγ
√

ckγ
2
+ 2b2

)3e

−(R2
i
+R2

j
)

4(ck
γ
2
+2b2) ·

iL((γe −
1

2(ckγ
2
+ 2b2)

)RiRj)δ
M,M ′

L,L′ (E.23)

The Tables E.1-E.5 give all the flavor-spin-color matrix elements needed for the hyperfine
interaction.
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α NN NN ∆∆ NN ∆∆ CC

β NN ∆∆ ∆∆ CC CC CC

σ1.σ2 τ1.τ2 2025 0 405 0 0 -891

σ3.σ6 τ3.τ6 1125 720 1125 0 0 -315

σ1.σ2 τ1.τ2 P
fσc
36 645 60 15 24 -48 -30

σ3.σ6 τ3.τ6 P
fσc
36 465 60 735 -192 -192 -822

σ1.σ3 τ1.τ3 P
fσc
36 465 420 15 168 24 114

σ1.σ6 τ1.τ6 P
fσc
36 465 60 15 -12 -48 294

σ1.σ4 τ1.τ4 P
fσc
36 315 360 135 18 -180 72

σ1.σ2 λ
f
1 .λ

f
2 1890 0 540 0 0 -972

σ3.σ6 λ
f
3 .λ

f
6 1080 720 900 0 0 -396

σ1.σ2 λ
f
1 .λ

f
2 P

fσc
36 590 80 20 32 -64 176

σ3.σ6 λ
f
3 .λ

f
6 P

fσc
36 460 40 700 -164 -152 -644

σ1.σ3 λ
f
1 .λ

f
3 P

fσc
36 440 380 20 152 -4 200

σ1.σ6 λ
f
1 .λ

f
6 P

fσc
36 440 80 20 -22 -16 350

σ1.σ4 λ
f
1 .λ

f
4 P

fσc
36 315 330 120 15 -150 129

σ1.σ2 λ
f,0
1 .λf,0

2 -270 0 270 0 0 -162

σ3.σ6 λ
f,0
3 .λf,0

6 -90 0 -450 0 0 -162

σ1.σ2 λ
f,0
1 .λf,0

2 P fσc
36 -110 40 10 16 -32 412

σ3.σ6 λ
f,0
3 .λf,0

6 P fσc
36 -10 -40 -70 56 80 356

σ1.σ3 λ
f,0
1 .λf,0

3 P fσc
36 -50 -80 10 -32 -56 172

σ1.σ6 λ
f,0
1 .λf,0

6 P fσc
36 -50 40 10 -20 64 112

σ1.σ4 λ
f,0
1 .λf,0

4 P fσc
36 0 -60 -30 -6 60 114

factor 1
405

1
405

1
405

√
10

405

√
10

405
1

405

Table E.1: Matrix elements 〈α|O|β〉 of different operators O for (S,I) = (0,0).
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α NN NN ∆∆ NN ∆∆ CC

β NN ∆∆ ∆∆ CC CC CC

σ1.σ2 τ1.τ2 4860 0 972 0 0 108

σ3.σ6 τ3.τ6 -900 576 1980 0 0 1116

σ1.σ2 τ1.τ2 P
fσc
36 -444 48 12 -720 288 588

σ3.σ6 τ3.τ6 P
fσc
36 708 48 1596 240 672 -1092

σ1.σ3 τ1.τ3 P
fσc
36 132 336 12 -720 288 -420

σ1.σ6 τ1.τ6 P
fσc
36 132 48 12 336 -96 -420

σ1.σ4 τ1.τ4 P
fσc
36 36 -144 -36 228 288 -1260

σ1.σ2 λ
f
1 .λ

f
2 4536 0 1296 0 0 -18

σ3.σ6 λ
f
3 .λ

f
6 -864 576 1584 0 0 1020

σ1.σ2 λ
f
1 .λ

f
2 P

fσc
36 -376 64 16 -672 384 706

σ3.σ6 λ
f
3 .λ

f
6 P

fσc
36 784 32 1520 216 528 -1024

σ1.σ3 λ
f
1 .λ

f
3 P

fσc
36 104 304 16 -672 384 -332

σ1.σ6 λ
f
1 .λ

f
6 P

fσc
36 104 64 16 340 -200 -332

σ1.σ4 λ
f
1 .λ

f
4 P

fσc
36 44 -152 -32 278 164 -1197

σ1.σ2 λ
f,0
1 .λf,0

2 -648 0 648 0 0 -252

σ3.σ6 λ
f,0
3 .λf,0

6 72 0 -792 0 0 -192

σ1.σ2 λ
f,0
1 .λf,0

2 P fσc
36 136 32 8 96 192 236

σ3.σ6 λ
f,0
3 .λf,0

6 P fσc
36 152 -32 -152 -48 -288 136

σ1.σ3 λ
f,0
1 .λf,0

3 P fσc
36 -56 -64 8 96 192 176

σ1.σ6 λ
f,0
1 .λf,0

6 P fσc
36 -56 32 8 8 -208 176

σ1.σ4 λ
f,0
1 .λf,0

4 P fσc
36 16 -16 8 -20 -248 126

factor 1
972

√
5

972
1

972

√
5

972
1

972
1

972

Table E.2: Matrix elements 〈α|O|β〉 of different operators O for (S,I) = (1,0).
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α NN NN ∆∆ NN ∆∆ CC

β NN ∆∆ ∆∆ CC CC CC

σ1.σ2 τ1.τ2 4860 0 972 0 0 108

σ3.σ6 τ3.τ6 -900 576 1980 0 0 1116

σ1.σ2 τ1.τ2 P
fσc
36 -444 48 12 -720 288 588

σ3.σ6 τ3.τ6 P
fσc
36 708 48 1596 240 672 -1092

σ1.σ3 τ1.τ3 P
fσc
36 132 336 12 -720 288 -420

σ1.σ6 τ1.τ6 P
fσc
36 132 48 12 336 -96 -420

σ1.σ4 τ1.τ4 P
fσc
36 36 -144 -36 228 288 -1260

σ1.σ2 λ
f
1 .λ

f
2 4536 0 1296 0 0 -126

σ3.σ6 λ
f
3 .λ

f
6 -1008 576 1440 0 0 948

σ1.σ2 λ
f
1 .λ

f
2 P

fσc
36 -376 64 16 -672 384 814

σ3.σ6 λ
f
3 .λ

f
6 P

fσc
36 832 32 1568 232 496 -976

σ1.σ3 λ
f
1 .λ

f
3 P

fσc
36 104 304 16 -672 384 -260

σ1.σ6 λ
f
1 .λ

f
6 P

fσc
36 104 64 16 364 -248 -260

σ1.σ4 λ
f
1 .λ

f
4 P

fσc
36 36 -168 -48 298 124 -1155

σ1.σ2 λ
f,0
1 .λf,0

2 -648 0 648 0 0 -468

σ3.σ6 λ
f,0
3 .λf,0

6 -216 0 -1080 0 0 -336

σ1.σ2 λ
f,0
1 .λf,0

2 P fσc
36 136 32 8 96 192 452

σ3.σ6 λ
f,0
3 .λf,0

6 P fσc
36 248 -32 -56 -16 -352 232

σ1.σ3 λ
f,0
1 .λf,0

3 P fσc
36 -56 -64 8 96 192 320

σ1.σ6 λ
f,0
1 .λf,0

6 P fσc
36 -56 32 8 56 -304 320

σ1.σ4 λ
f,0
1 .λf,0

4 P fσc
36 0 -48 -24 20 -328 210

factor 1
972

√
5

972
1

972

√
5

972
1

972
1

972

Table E.3: Matrix elements 〈α|O|β〉 of different operators O for (S,I) = (0,1).
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α NN NN ∆∆ NN ∆∆ CC

β NN ∆∆ ∆∆ CC CC CC

σ1.σ2 τ1.τ2 3645 0 729 0 0 2187

σ3.σ6 τ3.τ6 225 720 1089 -14400 -7200 185967

σ1.σ2 τ1.τ2 P
fσc
36 633 60 3 -3360 -9240 -185808

σ3.σ6 τ3.τ6 P
fσc
36 525 60 1083 -14160 -13560 -323508

σ1.σ3 τ1.τ3 P
fσc
36 381 420 3 8880 -5640 -188688

σ1.σ6 τ1.τ6 P
fσc
36 381 60 3 -5880 480 -186888

σ1.σ4 τ1.τ4 P
fσc
36 219 240 3 -4980 -26880 -125418

σ1.σ2 λ
f
1 .λ

f
2 3402 0 972 0 0 -77274

σ3.σ6 λ
f
3 .λ

f
6 252 720 729 -14400 -7200 138636

σ1.σ2 λ
f
1 .λ

f
2 P

fσc
36 574 80 4 -2320 -12320 -59554

σ3.σ6 λ
f
3 .λ

f
6 P

fσc
36 584 40 1064 -11960 -9760 -284504

σ1.σ3 λ
f
1 .λ

f
3 P

fσc
36 364 380 4 7880 -9320 -128914

σ1.σ6 λ
f
1 .λ

f
6 P

fσc
36 364 80 4 -6580 4420 -127414

σ1.σ4 λ
f
1 .λ

f
4 P

fσc
36 229 230 4 -4750 -22700 -105349

σ1.σ2 λ
f,0
1 .λf,0

2 -486 0 486 0 0 -158922

σ3.σ6 λ
f,0
3 .λf,0

6 54 0 -594 0 0 -94662

σ1.σ2 λ
f,0
1 ..λf,0

2 P fσc
36 -118 40 2 -7721 -6160 154498

σ3.σ6 λ
f,0
3 .λf,0

6 P fσc
36 118 -40 -38 9179 7600 125798

σ1.σ3 λ
f,0
1 .λf,0

3 P fσc
36 -34 -80 2 -6941 -7360 137638

σ1.σ6 λ
f,0
1 .λf,0

6 P fσc
36 -34 40 2 7159 7880 137038

σ1.σ4 λ
f,0
1 .λf,0

4 P fσc
36 20 -20 2 8749 8360 123028

factor 1
729

1
729

1
729

1
729·

√
1486

1
729·

√
1486

1
729·743

Table E.4: Matrix elements 〈α|O|β〉 of different operators O for (S,I) = (1,1).
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H
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e
r
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n
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In
te

r
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n
1
6
5

(S, I) (3,3) (3,2) (2,3) (3,1) (1,3) (3,0) (0,3) (2,2) (2,1) (1,2) (2,0) (0,2) (1,1) (1,0) (0,1) (0,0)

P fσc
36 243 81 81 -27 -27 -81 -81 27 -9 -9 -27 -27 3 9 9 27

σ1.σ2 τ1.τ2 729 729 729 729 729 729 729 729 729 729 729 729 729 729 729 729

σ3.σ6 τ3.τ6 729 -243 -243 -891 -891 -1215 -1215 81 297 297 155 155 1089 1485 1485 2025

σ1.σ2 τ1.τ2 P
fσc
36 243 81 81 -27 -27 -81 -81 27 -9 -9 -27 -27 3 9 9 27

σ3.σ6 τ3.τ6 P
fσc
36 243 405 405 513 513 567 567 675 855 855 945 945 1083 1197 1197 1323

σ1.σ3 τ1.τ3 P
fσc
36 243 81 81 -27 -27 -81 -81 27 -9 -9 -27 -27 3 9 9 27

σ1.σ6 τ1.τ6 P
fσc
36 243 81 81 -27 -27 -81 -81 27 -9 -9 -27 -27 3 9 9 27

σ1.σ4 τ1.τ4 P
fσc
36 243 -243 -243 -27 -27 243 243 243 27 27 -243 -243 3 -27 -27 243

σ1.σ2 λ
f
1 .λ

f
2 972 972 972 972 972 972 972 972 972 972 972 972 972 972 972 972

σ3.σ6 λ
f
3 .λ

f
6 972 0 -324 -648 -1188 -972 -1620 0 216 0 324 0 792 1188 1080 1620

σ1.σ2 λ
f
1 .λ

f
2 P

fσc
36 324 108 108 -36 -36 -108 -108 36 -12 -12 -36 -36 4 12 12 36

σ3.σ6 λ
f
3 .λ

f
6 P

fσc
36 324 432 540 504 684 432 756 720 840 912 900 1008 1064 1140 1176 1260

σ1.σ3 λ
f
1 .λ

f
3 P

fσc
36 324 108 108 -36 -36 -108 -108 36 -12 -12 -36 -36 4 12 12 36

σ1.σ6 λ
f
1 .λ

f
6 P

fσc
36 324 108 108 -36 -36 -108 -108 36 -12 -12 -36 -36 4 12 12 36

σ1.σ4 λ
f
1 .λ

f
4 P

fσc
36 324 -216 -324 -36 -36 216 324 216 36 24 -216 -216 4 -24 -36 216

σ1.σ2 λ
f,0
1 .λf,0

2 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486 486

σ3.σ6 λ
f,0
3 .λf,0

6 486 486 -162 486 -594 486 -810 -162 -162 -594 -162 -810 -594 -594 -810 -810

σ1.σ2 λ
f,0
1 ..λf,0

2 P fσc
36 162 54 54 -18 -18 -54 -54 18 -6 -6 -18 -18 2 6 6 18

σ3.σ6 λ
f,0
3 .λf,0

6 P fσc
36 162 54 270 -18 342 -54 378 90 -30 114 -30 126 -38 -114 -42 -126

σ1.σ3 λ
f,0
1 .λf,0

3 P fσc
36 162 54 54 -18 -18 -54 -54 18 -6 -6 -18 -18 2 6 6 18

σ1.σ6 λ
f,0
1 .λf,0

6 P fσc
36 162 54 54 -18 -18 -54 -54 18 -6 -6 -18 -18 2 6 6 18

σ1.σ4 λ
f,0
1 .λf,0

4 P fσc
36 162 54 -162 -18 -18 -54 162 -54 18 -6 54 54 2 6 -18 -54

factor 1
729

1
729

1
729

1
729

1
729

1
729

1
729

1
729

1
729

1
729

1
729

1
729

1
729

1
729

1
729

1
729
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Appendix F

The Tensor Force

In this appendix we present the calculation of the matrix elements needed in the 3S1 − 3D1

tensor coupling in the RGM approach. The main difficulties arise from the coupling of
three spaces, namely the spin, flavor and orbital spaces. In order to keep this appendix
self-consistent, we reproduce here the tensor potential

V T
χ (rij) =

{

3
∑

a=1

Vπ(rij)λ
a
i λ

a
j +

7
∑

a=4

VK(rij)λ
a
i λ

a
j + Vη(rij)λ

8
iλ

8
j +

2

3
Vη′(rij)

}

ST
ij (F.1)

where λa
i are the Gell-Mann flavour matrices, ST

ij is given by

ST
ij =

3(~rij · ~σi)(~rij · ~σj)

r2
− ~σi · ~σj (F.2)

and

V T
γ (r) = Gf

g2
γ

4π

1

12mimj
[µ2

γ(1 +
3

µγr
+

3

µ2
γr

2
)
e−µγr

r
− Λ2

γ(1 +
3

Λγr
+

3

Λ2
γr

2
)
e−Λγr

r
] (F.3)

for γ = π,K, η and η’. In Eq. (F.3), Gf , gγ ,mi,mj, µγ and Λγ are the parameters of the
model.

For 3S1 − 3D1 coupling, we need the states |3S1 > and |3D1 > (I = 0, S = 1 and J = 1).
Because the tensor force conserves J (and jz), we choose the particular projection jz = 1 for
|3S1 > and |3D1 >. Then the wave functions have the following forms

|3S1 >= f(R) Y 0
0 χ|sz=1 φ|iz=0 (F.4)

and

|3D1 > = CS=1 L=2 J=1
sz=1 lz=0 jz=1 f(R) Y 0

2 (R̂i) χ|sz=1 φ|iz=0

+ CS=1 L=2 J=1
sz=0 lz=1 jz=1 f(R) Y 1

2 (R̂i) χ|sz=0 φ|iz=0

+ C S=1 L=2 J=1
sz=−1 lz=2 jz=1 f(R) Y 2

2 (R̂i) χ|sz=−1 φ|iz=0 (F.5)
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which leads to

|3D1 > = f(R) (

√

1

10
Y 0

2 (R̂i) χ|sz=1 φ|iz=0

−
√

3

10
Y 1

2 (R̂i) χ|sz=0 φ|iz=0

+

√

6

10
Y 2

2 (R̂i) χ|sz=−1 φ|iz=0) (F.6)

and

<3 D1| = f(R) (

√

1

10
Y 0∗

2 (R̂i) χ|sz=1 φ|iz=0

−
√

3

10
Y 1∗

2 (R̂i) χ|sz=0 φ|iz=0

+

√

6

10
Y 2∗

2 (R̂i) χ|sz=−1 φ|iz=0) (F.7)

Let us rewrite the operator ST
ij (F.2) in the following form

ST
ij =

√

π

5
Y 0

2 (r̂ij)(σizσjz)

−
√

π

5

1

4
Y 0

2 (r̂ij)(σi+σj− + σi−σj+)

+

√

6π

5

1

4
Y −1

2 (r̂ij)(σizσj+ + σi+σjz)

−
√

6π

5

1

4
Y 1

2 (r̂ij)(σizσj− + σi−σjz)

+

√

6π

5

1

4
Y −2

2 (r̂ij)(σi+σj+)

+

√

6π

5

1

4
Y 2

2 (r̂ij)(σi−σj−) (F.8)

or

ST
ij = Y 0

2 (r̂ij) O
0
ij + Y −1

2 (r̂ij) O
−1
ij + Y 1

2 (r̂ij) O
1
ij + Y −2

2 (r̂ij) O
−2
ij + Y 2

2 (r̂ij) O
2
ij

(F.9)

where

O0
ij =

√

π

5

1

4
(4 σizσjz − σi+σj− − σi−σj+)

O−1
ij =

√

6π

5

1

4
(σizσj+ + σi+σjz)

O1
ij = −

√

6π

5

1

4
(σizσj− + σi−σjz)

O−2
ij =

√

6π

5

1

4
(σi+σj+)

O2
ij =

√

6π

5

1

4
(σi−σj−) (F.10)
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We use the formula (D.4) of two-body potential matrix element given in Appendix D

< Ψ6q|Vij |Ψ6q >= V (~a)N(~Ri, ~Rj) (F.11)

where

V (~a) = (
1√
2πb

)3
∫

e
−(~r−~a/2)2

2b2 V (~r)d~r (F.12)

with for

v12 : ~a = 0

v36 : ~a = ~Ri + ~Rj

v12P36 : ~a = 0

Vij = v36P36 : ~a = ~Ri − ~Rj

v13P36 : ~a = ~Rj

v16P36 : ~a = ~Ri

v14P36 : ~a = ~Ri + ~Rj (F.13)

and where N(~Ri, ~Rj) is given by Eqs. (B.5) for the direct term and (B.10) for the exchange
term.

For the < V T (12) > matrix element associated to the diagram a of Fig. 5.1, we then get

< V T (12) > = <
∑

γ

λγ
1λ

γ
2N

d(~Ri, ~Rj)(
1√
2πb

)3
∫

e
−r2

2b2 V T
γ S

T
12(~r)d~r >

=
8
∑

γ=0

2
∑

k=−2

< λγ
1λ

γ
2O

k
12 >

Nd(~Ri, ~Rj)(
1√
2πb

)3
∫

e
−r2

2b2 V T
γ (r)Y k

2 (r)d~r

= 0

For the diagram b of Fig. 5.1 we obtain

< V T (36) > = <
∑

γ

λγ
3λ

γ
6N

d(~Ri, ~Rj)(
1√
2πb

)3
∫

e
−(~r−

~Ri+
~Rj

2 )2

2b2 V T
γ S

T
36(~r)d~r >

=
8
∑

γ=0

2
∑

k=−2

< λγ
3λ

γ
6O

k
36 > Nd(~Ri, ~Rj)(

1√
2πb

)3
∫

e
−(~r−

~Ri+
~Rj

2 )2

2b2 V T
γ (r)Y k

2 (r)d~r

=
8
∑

γ=0

2
∑

k=−2

< λγ
3λ

γ
6O

k
36 > ×e−αd(R2

i +R2
j )e3

~Ri·~Rj

4b2
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(αd =
3

8b2
) (

1√
2πb

)3e−
~Ri·~Rj

4b2 e
−(R2

i
+R2

j
)

8b2

∫

e
−r2

2b2 e
~r·~Ri
2b2 e

~r·~Rj

2b2 V T
γ (r)Y k

2 (r)d~r

=
8
∑

γ=0

2
∑

k=−2

< λγ
3λ

γ
6O

k
36 > ×e−αd(R2

i +R2
j )

√

2

π

1

b3
e

−(R2
i
+R2

j
)

8b2

∑

pq

ip(
RiRj

2b2
)Y q∗

p (Ri)Y
q
p (Rj)

∫

e
−r2

2b2 e
~r·~Ri
2b2 e

~r·~Rj

2b2 V T
γ (r)Y k

2 (r)d~r

=
8
∑

γ=0

2
∑

k=−2

< λγ
3λ

γ
6O

k
36 > ×e−αd(R2

i +R2
j )

√

2

π

1

b3
e

−(R2
i
+R2

j
)

8b2

∑

pq

ip(
RiRj

2b2
)Y q∗

p (Ri)Y
q
p (Rj) × (4π)2

∑

LM,lm

YM
L (Ri)Y

m∗
l (Rj)

∫

iL(
rRi

2b2
)il(

rRj

2b2
)Y M∗

L (r)Y m
l (r)e

−r2

2b2 V T
γ (r)Y k

2 (r)r2drdΩr

Using the following relation

Y m
l Y k

2 =
∑

xy

√

(2l + 1)5

4π(2x + 1)
< l, 2,m, k|x, y >< l, 2, 0, 0|x, 0 > Y y

x ,

we get x = L and y = M in the previous equation. We then have

< V T (36) > =
8
∑

γ=0

2
∑

k=−2

< λγ
3λ

γ
6O

k
36 > e−αd(R2

i +R2
j )

√

2

π

1

b3
e

−(R2
i
+R2

j
)

8b2

∑

pq

ip(
RiRj

2b2
)Y q∗

p (Ri)Y
q
p (Rj) (4π)2

∑

LM,lm

YM
L (Ri)Y

m∗
l (Rj)

√

(2l + 1)5

4π(2L+ 1)
< l, 2,m, k|L,M >< l, 2, 0, 0|L, 0 >

∫

iL(
rRi

2b2
)il(

rRj

2b2
)e

−r2

2b2 V T
γ (r)r2dr

=
8
∑

γ=0

2
∑

k=−2

< λγ
3λ

γ
6O

k
36 > e−αd(R2

i +R2
j )

√

2

π

1

b3
e

−(R2
i
+R2

j
)

8b2

∑

pq

ip(
RiRj

2b2
)Y q∗

p (Ri)Y
q
p (Rj)(4π)2

∑

LM,lm

YM
L (Ri)Y

m∗
l (Rj)

√

(2l + 1)5

4π(2L+ 1)
< l, 2,m, k|L,M >< l, 2, 0, 0|L, 0 > Kt,γ

L,l(Ri, Rj)

where Kt,γ
L,l(Ri, Rj) =

∫

iL( rRi
2b2

)il(
rRj

2b2
)e

−r2

2b2 V T
γ (r)r2dr.

The non-zero matrix elements for the flavor-spin operator are given in the Table F.1
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Let us now consider the following three cases

• 3S1 − 3S1

< Y 0
0 (Rj)V

T (36)Y 0
0 (Ri) > =

8
∑

γ=0

2
∑

k=−2

< λγ
3λ

γ
6O

k
36 > e−αd(R2

i +R2
j )

√

2

π

1

b3

4πe
−(R2

i
+R2

j
)

8b2
∑

pq

ip(
RiRj

2b2
)Y q∗

p (Ri)Y
q
p (Rj)

∑

LM,lm

YM
L (Ri)Y

m∗
l (Rj)K

t,γ
L,l(Ri, Rj)

√

(2l + 1)5

4π(2L+ 1)
< l, 2,m, k|L,M >< l, 2, 0, 0|L, 0 >

The only non-zero values are obtained if we take p = l, q = m and l = L,m = M . This
leads to

< Y 0
0 (Rj)V

T (36)Y 0
0 (Ri) > =

8
∑

γ=0

2
∑

k=−2

< λγ
3λ

γ
6O

k
36 > e−αd(R2

i +R2
j )

√

2

π

1

b3

4πe
−(R2

i
+R2

j
)

8b2
∑

LM

iL(
RiRj

2b2
)Kt,γ

L,L(Ri, Rj)

√

5

4π
< L, 2,M, k|L,M >< L, 2, 0, 0|L, 0 >

From which it follows that k has to be zero. If we note that < L, 2,M, 0|L,M >=
√

2(L+L2−3M2)√
L(2L−1)(2L+2)(2L+3)

, and < L, 2, 0, 0|L, 0 > does not depend on M , we get

L
∑

M=−L

< L, 2,M, 0|L,M > ∝
L
∑

M=−L

(L+ L2 − 3M2)

= (2L+ 1)(L + L2) − L(L+ 1)(2L + 1)

= 0

• 3D1 − 3S1

With the |3D1 > state defined in Eq. (F.6), for each k′ we have to calculate the matrix
elements proportional to < Y k′∗

2 (Rj)V
T
36Y

0
0 (Ri) > . We obtain

< Y k′∗
2 (Rj)V

T (36)Y 0
0 (Ri) > =

8
∑

γ=0

2
∑

k=−2

< λγ
3λ

γ
6O

k
36 > e−αd(R2

i +R2
j )

√

2

π

1

b3
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e
−(R2

i
+R2

j
)

8b2 (4π)
3
2

∑

pq

ip(
RiRj

2b2
)Y q∗

p (Ri)Y
q
p (Rj)

∑

LM,lm

Kt,γ
L,l(Ri, Rj)Y

k′∗
2 (Rj)Y

M
L (Ri)Y

m∗
l (Rj)

√

(2l + 1)5

4π(2L + 1)
< l, 2,m, k|L,M >< l, 2, 0, 0|L, 0 >

It follow that p = L and q = M . We then get

< Y k′∗
2 (Rj)V

T (36)Y 0
0 (Ri) > =

8
∑

γ=0

2
∑

k=−2

< λγ
3λ

γ
6O

k
36 > e−αd(R2

i +R2
j )

√

2

π

1

b3

e
−(R2

i
+R2

j
)

8b2 (4π)
3
2

∑

LM,lm

iL(
RiRj

2b2
)Kt,γ

L,l(Ri, Rj)

YM
L (Rj)Y

k′∗
2 (Rj)Y

m∗
l (Rj)

√

(2l + 1)5

4π(2L + 1)
< l, 2,m, k|L,M >< l, 2, 0, 0|L, 0 >

The relation

Y k′∗
2 Y m∗

l =
∑

xy

√

5(2l + 1)

4π(2x+ 1)
< 2, l,−k′,−m|x, y >< 2, l, 0, 0|x, 0 > Y −y∗

x ,

leads to x = L and y = −M in the previous equation

< Y k′∗
2 (Rj)V

T (36)Y 0
0 (Ri) > =

8
∑

γ=0

2
∑

k=−2

< λγ
3λ

γ
6O

k
36 > e−αd(R2

i +R2
j )

√

2

π

1

b3

e
−(R2

i
+R2

j
)

8b2 5
√

4π
∑

LM,lm

iL(
RiRj

2b2
)Kt,γ

L,l(Ri, Rj)
2l + 1

2L+ 1

< 2, l,−k′,−m|L,−M >< 2, l, 0, 0|L, 0 >
< l, 2,m, k|L,M >< l, 2, 0, 0|L, 0 >

We see that the only non-zero terms come from k = k′ and m = M − k′. Moreover,
with the CG propriety

< 2, l,−k′,−m|L,−M >= (−)2+l−L < 2, l, k′,m|L,M >=< l, 2,m, k′|L,M >

and

< l, 2, 0, 0|L, 0 >= (−)l+2−L < 2, l, 0, 0|L, 0 >
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we have

< Y k′∗
2 (Rj)V

T (36)Y 0
0 (Ri) > =

8
∑

γ=0

< λγ
3λ

γ
6O

k′
36 > e−αd(R2

i +R2
j )

√

2

π

1

b3

e
−(R2

i
+R2

j
)

8b2 5
√

4π
∑

LM,l

iL(
RiRj

2b2
)Kt,γ

L,l(Ri, Rj)
2l + 1

2L+ 1
(−)l−L

< l, 2,M − k′, k′|L,M >2< 2, l, 0, 0|L, 0 >2 .

Now if we look at Table F.1, we see that only k′ = 0 gives a non-zero contribution.
Moreover, from the properties of the CG, only the values l = L−2, l = L and l = L+2
are allowed. We can then write

< Y k′∗
2 (Rj)V

T (36)Y 0
0 (Ri) > = δ(k′, 0)

8
∑

γ=0

< λγ
3λ

γ
6O

0
36 > e−αd(R2

i +R2
j )

√

2

π

1

b3

e
−(R2

i
+R2

j
)

8b2 5
√

4π
∑

LM,l

iL(
RiRj

2b2
)Kt,γ

L,l(Ri, Rj)
2l + 1

2L+ 1
(−)l−L

< l, 2,M, 0|L,M >2< 2, l, 0, 0|L, 0 >2

= δ(k′, 0)
8
∑

γ=0

< λγ
3λ

γ
6O

0
36 > ×e−αd(R2

i +R2
j )

√

2

π

1

b3

e
−(R2

i
+R2

j
)

8b2
∑

L

iL(
RiRj

2b2
)[C1(L)Kt,γ

L,L−2(Ri, Rj) +

C2(L)Kt,γ
L,L(Ri, Rj) + C3(L)Kt,γ

L,L+2(Ri, Rj)]

where

C1(L) = 5
√

4π
2L− 3

2L+ 1

∑

M

< L− 2, 2,M, 0|L,M >2< 2, L− 2, 0, 0|L, 0 >2

= 3
√
π
L(L− 1)

2L− 1

C2(L) = 5
√

4π
∑

M

< L, 2,M, 0|L,M >2< 2, L, 0, 0|L, 0 >2

= 2
√
π
L(L+ 1)(2L+ 1)

(2L− 1)(2L+ 3)

C3(L) = 5
√

4π
2L+ 5

2L+ 1

∑

M

< L+ 2, 2,M, 0|L,M >2< 2, L+ 2, 0, 0|L, 0 >2

= 3
√
π

(L+ 1)(L+ 2)

2L+ 3
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• 3D1 − 3D1

For each k′ and z, we need

< Y k′∗
2 (Rj)V

T (36)Y z
2 (Ri) > =

8
∑

γ=0

2
∑

k=−2

< λγ
3λ

γ
6O

k
36 > e−αd(R2

i +R2
j )

√

2

π

1

b3

e
−(R2

i
+R2

j
)

8b2 (4π)2
∑

pq

ip(
RiRj

2b2
)Y q∗

p (Ri)Y
q
p (Rj)

∑

LM,lm

Kt,γ
L,l(Ri, Rj)Y

k′∗
2 (Rj)Y

z
2 (Ri)Y

M
L (Ri)Y

m∗
l (Rj)

√

(2l + 1)5

4π(2L + 1)
< l, 2,m, k|L,M >< l, 2, 0, 0|L, 0 >

Here we use the relations

Y k′∗
2 Y m∗

l =
∑

xy

√

5(2l + 1)

4π(2x+ 1)
< 2, l,−k′,−m|x, y >< 2, l, 0, 0|x, 0 > Y −y∗

x

and

Y z
2 Y

M
L =

∑

x′y′

√

5(2L+ 1)

4π(2x′ + 1)
< 2, L, z,M |x′, y′ >< 2, L, 0, 0|x′, 0 > Y y′

x′ .

This leads to x = p,y = −q,x′ = p and y′ = q :

< Y k′∗
2 (Rj)V

T (36)Y z
2 (Ri) > =

8
∑

γ=0

2
∑

k=−2

< λγ
3λ

γ
6O

k
36 > e−αd(R2

i +R2
j )

√

2

π

1

b3

e
−(R2

i
+R2

j
)

8b2 (4π)2
∑

pq

ip(
RiRj

2b2
)
∑

LM,lm

Kt,γ
L,l(Ri, Rj)

√

5(2l + 1)

4π(2p + 1)
< 2, l,−k′,−m|p,−q >< 2, l, 0, 0|p, 0 >

√

5(2L+ 1)

4π(2p + 1)
< 2, L, z,M |p, q >< 2, L, 0, 0|p, 0 >

√

(2l + 1)5

4π(2L + 1)
< l, 2,m, k|L,M >< l, 2, 0, 0|L, 0 >

Then, q = k′ +m, k = k′ − z, and using the proprieties
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< 2, l, 0, 0|p, 0 >=

√

2p+ 1

2l + 1
< 2, p, 0, 0|l, 0 >,

< 2, L, 0, 0|p, 0 >=

√

2p+ 1

2L+ 1
< 2, p, 0, 0|L, 0 >,

< l, 2, 0, 0|L, 0 >= (−)l−L

√

2L+ 1

2l + 1
< 2, L, 0, 0|l, 0 >,

we obtain

< Y k′∗
2 (Rj)V

T (36)Y z
2 (Ri) > =

8
∑

γ=0

< λγ
3λ

γ
6O

k′−z
36 > e−αd(R2

i +R2
j )

√

2

π

1

b3
5
√

20π

e
−(R2

i
+R2

j
)

8b2
∑

p

∑

LM,lm

ip(
RiRj

2b2
)Kt,γ

L,l(Ri, Rj)

< 2, l,−k′,−m|p,−k′ −m >< 2, p, 0, 0|l, 0 >
< 2, L, z,M |p, k′ +m >< 2, p, 0, 0|L, 0 >
< l, 2,m, k′ − z|L,M >< 2, L, 0, 0|l, 0 > (−)l−L

=
8
∑

γ=0

< λγ
3λ

γ
6O

k′−z
36 > e−αd(R2

i +R2
j )

√

2

π

1

b3
5
√

20π

e
−(R2

i
+R2

j
)

8b2
∑

p

∑

LM,l

ip(
RiRj

2b2
)Kt,γ

L,l(Ri, Rj)

< 2, l,−k′,−z −M + k′|p,−z −M >< 2, p, 0, 0|l, 0 >
< 2, L, z,M |p, z +M >< 2, p, 0, 0|L, 0 >
< l, 2, z +M − k′, k′ − z|L,M >

< 2, L, 0, 0|l, 0 > (−)l−L

where we used the relation m = z + M − k′. Now, noting that p = l − 2, p = l or
p = l + 2, we have

< Y k′∗
2 (Rj)V

T (36)Y z
2 (Ri) > =

8
∑

γ=0

< λγ
3λ

γ
6O

k′−z
36 > e−αd(R2

i +R2
j )

√

2

π

1

b3
5
√

20π

e
−(R2

i
+R2

j
)

8b2
∑

LM,l

Kt,γ
L,l(Ri, Rj)(−)l−L

< l, 2, z +M − k′, k′ − z|L,M >< 2, L, 0, 0|l, 0 >

[il−2(
RiRj

2b2
) < 2, l,−k′,−z −M + k′|l − 2,−z −M >

< 2, l − 2, 0, 0|l, 0 >< 2, L, z,M |l − 2, z +M >

< 2, l − 2, 0, 0|L, 0 >

+il(
RiRj

2b2
) < 2, l,−k′,−z −M + k′|l,−z −M >
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< 2, l, 0, 0|l, 0 >< 2, L, z,M |l, z +M >< 2, l, 0, 0|L, 0 >

+il+2(
RiRj

2b2
) < 2, l,−k′,−z −M + k′|l + 2,−z −M >

< 2, l + 2, 0, 0|l, 0 >< 2, L, z,M |l + 2, z +M >

< 2, l + 2, 0, 0|L, 0 >]

In the same way, because l = L− 2, l = L or l = L+ 2, we get

< Y k′∗
2 (Rj)V

T (36)Y z
2 (Ri) > =

8
∑

γ=0

< λγ
3λ

γ
6O

k′−z
36 > e−αd(R2

i +R2
j )

√

2

π

1

b3
5
√

20π

e
−(R2

i
+R2

j
)

8b2
∑

LM

[Kt,γ
L,L−2(Ri, Rj)

< L− 2, 2, z +M − k′, k′ − z|L,M >

< 2, L, 0, 0|L − 2, 0 > [iL−2(
RiRj

2b2
)

< 2, L− 2,−k′,−z −M + k′|L− 2,−z −M >

< 2, L− 2, 0, 0|L − 2, 0 >< 2, L, z,M |L − 2, z +M >

< 2, L− 2, 0, 0|L, 0 >

+iL(
RiRj

2b2
) < 2, L− 2,−k′,−z −M + k′|L,−z −M >

< 2, L, 0, 0|L − 2, 0 >< 2, L, z,M |L, z +M >

< 2, L, 0, 0|L, 0 >]

+Kt,γ
L,L(Ri, Rj)

< L, 2, z +M − k′, k′ − z|L,M >< 2, L, 0, 0|L, 0 >

[iL−2(
RiRj

2b2
) < 2, L,−k′,−z −M + k′|L− 2,−z −M >

< 2, L− 2, 0, 0|L, 0 >< 2, L, z,M |L − 2, z +M >

< 2, L− 2, 0, 0|L, 0 >

+iL(
RiRj

2b2
) < 2, L,−k′,−z −M + k′|L,−z −M >

< 2, L, 0, 0|L, 0 >< 2, L, z,M |L, z +M >

< 2, L, 0, 0|L, 0 > +iL+2(
RiRj

2b2
)

< 2, L,−k′,−z −M + k′|L+ 2,−z −M >

< 2, L+ 2, 0, 0|L, 0 >< 2, L, z,M |L + 2, z +M >

< 2, L+ 2, 0, 0|L, 0 >]

+Kt,γ
L,L+2(Ri, Rj) < L+ 2, 2, z +M − k′, k′ − z|L,M >

< 2, L, 0, 0|L + 2, 0 >

[iL(
RiRj

2b2
) < 2, L+ 2,−k′,−z −M + k′|L,−z −M >

< 2, L, 0, 0|L + 2, 0 >< 2, L, z,M |L, z +M >

< 2, L, 0, 0|L, 0 > +iL+2(
RiRj

2b2
)
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< 2, L+ 2,−k′,−z −M + k′|L+ 2,−z −M >

< 2, L+ 2, 0, 0|L + 2, 0 >< 2, L, z,M |L + 2, z +M >

< 2, L+ 2, 0, 0|L, 0 >]]

because the factor in front of the Bessel function iL−4 and iL+4 is zero. Using some CG
symmetry properties, we have

< Y k′∗
2 (Rj)V

T (36)Y z
2 (Ri) > =

8
∑

γ=0

< λγ
3λ

γ
6O

k′−z
36 > ×e−αd(R2

i +R2
j )

√

2

π

1

b3

e
−(R2

i
+R2

j
)

8b2 < 2, 2, k′ − z, z|2, k′ >
∑

L

[Kt,γ
L,L−2(Ri, Rj)[D1(L)iL−2(

RiRj

2b2
) +D2(L)iL(

RiRj

2b2
)]

+Kt,γ
L,L(Ri, Rj)[D3(L)iL−2(

RiRj

2b2
) +D4(L)iL(

RiRj

2b2
)

+D5(L)iL+2(
RiRj

2b2
)]

+Kt,γ
L,L+2(Ri, Rj)[D6(L)iL(

RiRj

2b2
) +D7(L)iL+2(

RiRj

2b2
)]]

where

D1(L) = −3

√

5π

14

L(L− 1)(L − 2)

(2L− 1)2

D2(L) = D3(L) = −3

√

5π

14

L(L+ 1)(L − 1)

(2L− 1)2

D4(L) =

√

5π

14

L(L+ 1)(2L + 1)(2L + 5)(2L − 3)

(2L− 1)2(2L+ 3)2

D5(L) = D6(L) = −3

√

5π

14

L(L+ 1)(L + 2)

(2L+ 3)2

D7(L) = −3

√

5π

14

(L+ 1)(L+ 2)(L+ 3)

(2L+ 3)2

Let us now look at the case < V T (12)P36 > corresponding to the diagram c of Fig. 5.1

< V T (12)P36 > = <
∑

γ

λγ
1λ

γ
2N

e(~Ri, ~Rj)(
1√
2πb

)3
∫

e
−r2

2b2 V T
γ S

T
12(~r)d~rP

σfc
36 >

=
8
∑

γ=0

2
∑

k=−2

< λγ
1λ

γ
2O

k
12P

σfc
36 > N e(~Ri, ~Rj)(

1√
2πb

)3
∫

e
−r2

2b2 V T
γ (r)Y k

2 (r)d~r

= 0
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For < V T (36)P36 >, associated to the diagram g of Fig. 5.1, we obtain

< V T (36)P36 > = <
∑

γ

λγ
3λ

γ
6N

e(~Ri, ~Rj)(
1√
2πb

)3
∫

e
−(~r−

~Ri−~Rj
2

)2

2b2 V T
γ S

T
36(~r)d~rP

σfc
36 >

=
8
∑

γ=0

2
∑

k=−2

< λγ
3λ

γ
6O

k
36P

σfc
36 >

N e(~Ri, ~Rj)(
1√
2πb

)3
∫

e
−(~r−

~Ri−~Rj
2 )2

2b2 V T
γ (r)Y k

2 (r)d~r

=
8
∑

γ=0

2
∑

k=−2

< λγ
3λ

γ
6O

k
36P

σfc
36 > e−αe(R2

i +R2
j )e

~Ri·~Rj

4b2

(αe = αd) (
1√
2πb

)3e
~Ri·~Rj

4b2 e
−(R2

i
+R2

j
)

8b2

∫

e
−r2

2b2 e
~r·~Ri
2b2 e−

~r·~Rj

2b2 V T
γ (r)Y k

2 (r)d~r

=
8
∑

γ=0

2
∑

k=−2

< λγ
3λ

γ
6O

k
36P

σfc
36 > e−αe(R2

i +R2
j )

√

2

π

1

b3

e
−(R2

i
+R2

j
)

8b2
∑

pq

ip(
RiRj

2b2
)Y q∗

p (Ri)Y
q
p (Rj)

∫

e
−r2

2b2 e
~r·~Ri
2b2 e−

~r·~Rj

2b2 V T
γ (r)Y k

2 (r)d~r

=
8
∑

γ=0

2
∑

k=−2

< λγ
3λ

γ
6O

k
36P

σfc
36 > e−αe(R2

i +R2
j )

√

2

π

1

b3
e

−(R2
i
+R2

j
)

8b2

∑

pq

ip(
RiRj

2b2
)Y q∗

p (Ri)Y
q
p (Rj)(4π)2

∑

LM,lm

YM
L (Ri)Y

m∗
l (Rj)

(−)l
∫

iL(
rRi

2b2
)il(

rRj

2b2
)YM∗

L (r)Y m
l (r)e

−r2

2b2 V T
γ (r)Y k

2 (r)r2drdΩr

Where we used the property in(−y) = (−)nin(y).

• 3S1 − 3S1

< V T (36)P36 >= 0

• 3D1 − 3S1

< Y k′
2 (Rj)V

T (36)P36Y
0
0 (Ri) > = δ(k′, 0)

8
∑

γ=0

< λγ
3λ

γ
6O

0
36P

σfc
36 > e−αe(R2

i +R2
j )

√

2

π

1

b3

e
−(R2

i
+R2

j
)

8b2
∑

L

(−)LiL(
RiRj

2b2
)[C1(L)Kt,γ

L,L−2(Ri, Rj) +

C2(L)Kt,γ
L,L(Ri, Rj) + C3(L)Kt,γ

L,L+2(Ri, Rj)]
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• 3D1 − 3D1

< Y k′∗
2 (Rj)V

T (36)P36Y
z
2 (Ri) > =

8
∑

γ=0

< λγ
3λ

γ
6O

k′−z
36 P σfc

36 > e−αe(R2
i +R2

j )

√

2

π

1

b3

e
−(R2

i
+R2

j
)

8b2 < 2, 2, k′ − z, z|2, k′ >
∑

L

(−)L[Kt,γ
L,L−2(Ri, Rj)[D1(L)iL−2(

RiRj

2b2
)

+D2(L)iL(
RiRj

2b2
)]

+Kt,γ
L,L(Ri, Rj)[D3(L)iL−2(

RiRj

2b2
) +D4(L)iL(

RiRj

2b2
)

+D5(L)iL+2(
RiRj

2b2
)]

+Kt,γ
L,L+2(Ri, Rj)[D6(L)iL(

RiRj

2b2
)

+D7(L)iL+2(
RiRj

2b2
)]]

For the case < V T (13)P36 > corresponding to the diagram e of Fig. 5.1, we get

< V T (13)P36 > = <
∑

γ

λγ
1λ

γ
3N

e(~Ri, ~Rj)(
1√
2πb

)3
∫

e
−(~r−

~Rj
2 )2

2b2 V T
γ S

T
13(~r)d~rP

σfc
36 >

=
8
∑

γ=0

2
∑

k=−2

< λγ
1λ

γ
3O

k
13P

σfc
36 >

N e(~Ri, ~Rj)(
1√
2πb

)3
∫

e
−(~r−

~Rj
2

)2

2b2 V T
γ (r)Y k

2 (r)d~r

=
8
∑

γ=0

2
∑

k=−2

< λγ
1λ

γ
3O

k
13P

σfc
36 >

(αe = αd) e−αe(R2
i +R2

j )

√

2

π

1

b3

∑

pq

ip(γeRiRj)Y
q∗
p (Ri)Y

q
p (Rj)

(γe =
2

8b2
)

∫

e
−(~r−

~Rj
2 )2

2b2 V T
γ (r)Y k

2 (r)d~r

=
8
∑

γ=0

2
∑

k=−2

< λγ
1λ

γ
3O

k
13P

σfc
36 >

e−αe(R2
i +R2

j )

√

2

π

1

b3

∑

pq

ip(γeRiRj)Y
q∗
p (Ri)Y

q
p (Rj)
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4πe
−R2

j

8b2
∑

lm

Y m
l (Rj)

∫

il(
rRj

2b2
)Y m∗

l (r)e
−r2

2b2 V T
γ (r)Y k

2 (r)r2drdΩr

(⇒ l = 2,m = k) =
8
∑

γ=0

2
∑

k=−2

< λγ
1λ

γ
3O

k
13P

σfc
36 > e−αe(R2

i +R2
j ) 4

√
2π

b3

e
−R2

j

8b2
∑

pq

ip(γeRiRj)Y
q∗
p (Ri)Y

q
p (Rj)Y

k
2 (Rj)

∫

i2(
rRj

2b2
)e

−r2

2b2 V T
γ (r)r2dr

=
8
∑

γ=0

2
∑

k=−2

< λγ
1λ

γ
3O

k
13P

σfc
36 > e−αe(R2

i +R2
j ) 4

√
2π

b3

e
−R2

j

8b2
∑

pq

ip(γeRiRj)Y
q∗
p (Ri)Y

q
p (Rj)Y

k
2 (Rj)L

T
γ (Rj)

where

LT
γ (Rj) =

∫

i2(
rRj

2b2
)e

−r2

2b2 V T
γ (r)r2dr. (F.14)

Let us now consider the three cases

• 3S1 − 3S1

Obviously equals to zero.

• 3D1 − 3S1

With our definition of the |3D1 > state, for each k′ we have to calculate the matrix
elements proportional to < Y k′∗

2 (Rj)V
T
13P36Y

0
0 (Ri) >. We obtain

< Y k′∗
2 (Rj)V

T (13)P36Y
0
0 (Ri) > =

8
∑

γ=0

2
∑

k=−2

< λγ
1λ

γ
3O

k
13P

σfc
36 > e−αe(R2

i +R2
j ) 4

√
2π

b3

e
−R2

j

8b2 LT
γ (Rj)

∑

pq

ip(γeRiRj)

Y k′∗
2 (Rj)Y

q∗
p (Ri)Y

q
p (Rj)Y

k
2 (Rj)Y

0
0 (Ri)

(⇒ p = 0, q = 0) =
8
∑

γ=0

2
∑

k=−2

< λγ
1λ

γ
3O

k
13P

σfc
36 > e−αe(R2

i +R2
j ) 4

√
2π

b3

e
−R2

j

8b2 LT
γ (Rj)i0(γeRiRj)Y

k′∗
2 (Rj)Y

0
0 (Rj)Y

k
2 (Rj)

(⇒ k = k′) =
8
∑

γ=0

< λγ
1λ

γ
3O

k′
13P

σfc
36 > e−αe(R2

i +R2
j ) 4

√
2π

b3
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1√
4π
e

−R2
j

8b2 LT
γ (Rj)i0(γeRiRj)

• 3D1 − 3D1

This time, we have a matrix element like < Y k′∗
2 (Rj)V

T
13P36Y

z
2 (Ri) >

< Y k′∗
2 (Rj)V

T (13)P36Y
z
2 (Ri) > =

8
∑

γ=0

2
∑

k=−2

< λγ
1λ

γ
3O

k
13P

σfc
36 > e−αe(R2

i +R2
j ) 4

√
2π

b3

e
−R2

j

8b2 LT
γ (Rj)

∑

pq

ip(γeRiRj)

Y k′∗
2 (Rj)Y

q∗
p (Ri)Y

q
p (Rj)Y

k
2 (Rj)Y

z
2 (Ri)

(⇒ p = 2, q = z) =
8
∑

γ=0

2
∑

k=−2

< λγ
1λ

γ
3O

k
13P

σfc
36 > e−αe(R2

i +R2
j ) 4

√
2π

b3

e
−R2

j

8b2 LT
γ (Rj)i2(γeRiRj)Y

k′∗
2 (Rj)Y

k
2 (Rj)Y

z
2 (Rj)

Here we use the relation

Y k
2 Y

z
2 =

∑

xy

5
√

4π(2x + 1)
< 2, 2, k, z|x, y >< 2, 2, 0, 0|x, 0 > Y y

x

It follows that in the previous equation we need x = 2 and y = k′. Using< 2, 2, 0, 0|2, 0 >=

−
√

2
7 and k = k′ − z, we have

< Y k′∗
2 (Rj)V

T (13)P36Y
z
2 (Ri) > = −

8
∑

γ=0

< λγ
1λ

γ
3O

k′−z
13 P σfc

36 > e−αe(R2
i +R2

j ) 4
√

2π

b3

√

5

14π
e

−R2
j

8b2 LT
γ (Rj)i2(γeRiRj) < 2, 2, k′ − z, z|2, k′ >

For < V T (16)P36 >, associated to the diagram f of Fig. 5.1,
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=
8
∑

γ=0
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∑
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where LT
γ (Ri) is define in Eq. (F.14).

For the projections, we have

• 3S1 − 3S1

Obviously equals to zero.

• 3D1 − 3S1

For each k′ we get

< Y k′∗
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0
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• 3D1 − 3D1

This time, we have elements like < Y k′∗
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T
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Here we use the relation
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5
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This leads to take x = 2 and y = k′ in the previous equation. Using < 2, 2, 0, 0|2, 0 >=
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Finally, for the < V T (14)P36 > case, corresponding to the diagram d of Fig. 5.1
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• 3S1 − 3S1

We see immediately that l = 0, m = 0, L = 0 and M = 0, then
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then l = 2 and m = −k and this leads to take k = k′
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All the matrix elements for the flavor-spin operator associated to the tensor potential are
given in the Table F.1.

m = −1 m = 0 m = 0 m = 0 m = 1

O s′z = 0 s′z = −1 s′z = 0 s′z = 1 s′z = −1
sz = −1 sz = −1 sz = 0 sz = 1 sz = 0

Om
12τ1 · τ2 0 405 405 405 0

Om
36τ3 · τ6 150 -300 375 -75 -150

Om
12τ1 · τ2 P fσ

36 24 -147 -39 -111 -24

Om
36τ3 · τ6 P fσ

36 -102 330 -129 177 102

Om
13τ1 · τ3 P fσ

36 -12 51 -3 33 12

Om
16τ1 · τ6 P fσ

36 -12 51 -3 33 12

Om
14 τ1 · τ4 P fσ

36 9 -9/2 36 9 9

Om
12λ

f
1 · λf

2 0 378 378 378 0

Om
36λ

f
3 · λf

6 144 -288 360 -84 -144

Om
12λ

f
1 · λf

2 P
fσ
36 32 -142 2 -94 -32

Om
36λ

f
3 · λf

6 P
fσ
36 -80 316 -44 208 80

Om
13λ

f
1 · λf

3 P
fσ
36 -16 50 -22 26 16

Om
16λ

f
1 · λf

6 P
fσ
36 -16 50 -22 26 16

Om
14λ

f
1 · λf

4 P
fσ
36 8 -1 35 9 -8

Om
12λ

f,0
1 · λf,0

2 0 -54 -54 -54 0

Om
36λ

f,0
3 · λf,0

6 -12 24 -30 -18 12

Om
12λ

f,0
1 · λf,0

2 P fσ
36 16 10 82 34 -16

Om
36λ

f,0
3 · λf,0

6 P fσ
36 44 -28 170 62 -44

Om
13λ

f,0
1 · λf,0

3 P fσ
36 -8 -2 -38 -14 8

Om
16λ

f,0
1 · λf,0

6 P fσ
36 -8 -2 -38 -14 8

Om
14λ

f,0
1 · λf,0

4 P fσ
36 -2 7 -2 0 2

factor
√

15π
1620

√
5π

1620

√
5π

1620

√
5π

1620

√
15π

1620

Table F.1: The matrix elements 〈NNs′z |O|NNsz〉 of the different tensor operators O in the
case (S, I) = (1, 0).
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