Implementation of Quarkonium Production cross sections within Madgraph

HLPW 08 08 March 2008, March

Pierre Artoisenet

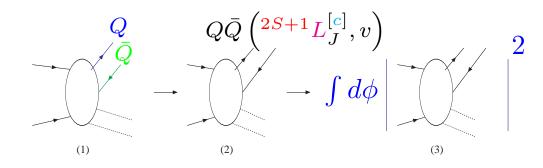
Center of Particle Physics and Phenomenology

Université Catholique de Louvain

In collaboration with Fabio Maltoni and Tim Stelzer

Implementation of Quarkonium Production cross sections within Madgraph - p

the purpose of MadOnia


expression of cross sections within NRQCD:

$$\sigma(ij \to Q + X) = \sum_{n} \hat{\sigma}(ij \to Q\bar{Q}(n) + X) \langle \mathcal{O}^{Q}(n) \rangle_{\Lambda}$$

• $\langle \mathcal{O}^{\mathcal{Q}}(n) \rangle$ is the long distance matrix element

• $\hat{\sigma}(i+j \rightarrow Q\bar{Q}(n) + X)$ is the short distance cross section

MadOnia: automatic tree-level computation of $\hat{\sigma}(ij \rightarrow Q\bar{Q}(n) + X)$

(1) open quark amplitude (MadGraph)

(2) projected amplitude (MadOnia)

(3) phase-space integration (unweighting \rightarrow MC event generator)

the purpose of MadOnia

capabilities:

universality: MadOnia generates any helicity amplitude

$$\mathcal{M}\left(ij \to Q\bar{Q}\left({}^{2S+1}L_J^{[c]}\right) + X\right)$$

at tree-level, for any model that can be implemented in MadGraph

- It keeps track of quantum numbers on event-by-event basis → events ready for showering and hadronization (in particular, calculation in terms of color-ordered amplitudes).
- $Q\bar{Q}'$ production: the quark and the anti-quark can be of different flavour (such as B_c)
- double quarkonium production (ex: $e^+e^- \rightarrow J/\psi \eta_c$)
- **s** relativistic corrections for S-wave state production can be computed