

HLPW meeting – March 6-8, 2008

Astrophysical tests of mirror dark matter

Paolo Ciarcelluti

ULg IFPA

Fundamental Interactions in Physics and Astrophysics

University of Liège

Publications related to this talk

P. Ciarcelluti, Ph.D. Thesis [astro-ph/0312607].

P. Ciarcelluti, Int. J. Mod. Phys. D 14, 187-222 (2005) [astro-ph/0409630].

P. Ciarcelluti, Int. J. Mod. Phys. D 14, 223-256 (2005) [astro-ph/0409633].

Z.Berezhiani, P.Ciarcelluti, D.Comelli, F.Villante, Int. J. Mod. Phys. D 14, 107-120 (2005) [astro-ph/0312605].

P. Ciarcelluti, A. Lepidi, papers submitted and in preparation

P. Ciarcelluti, paper in preparation

Z.Berezhiani, P.Ciarcelluti, S.Cassisi, A.Pietrinferni, Astropart. Phys. 24, 495-510 (2006) [astro-ph/0507153]. Cosmic Microwave Background and Large Scale Structure

Structure formation

Thermodynamics of the early Universe and Big Bang Nucleosynthesis

> Mirror dark stars and MACHOs

Motivation of this research

search for dark matter candidates

Components of a flat Universe in standard cosmology:

 \square radiation (relic γ and ν) $\rightarrow \Omega_{R} \sim 10^{-5} << \Omega_{m}$

 $\square \text{ matter} \rightarrow \Omega_{\rm m} \approx 0.2 \text{-} 0.3$

• visible (baryonic) matter $ightarrow \Omega_{
m b} \cong$ 0.02 h⁻²

- dark matter (CDM, WDM, some HDM)
 - $\rightarrow \Omega_{\rm DM} \, {\rm =} \, \Omega_{\rm m} \, {\rm -} \, \Omega_{\rm b}$

 \Box dark energy (cosmological constant or quintessence) $\rightarrow \Omega_{\Lambda} = 1 - \Omega_{m}$

Motivation of this research

search for dark matter candidates

Components of a flat Universe in standard cosmology:

 \square radiation (relic γ and $\nu) \rightarrow \Omega_{\rm R} \sim 10^{-5} << \Omega_{\rm m}$

 \square matter $\rightarrow \Omega_{\rm m} \approx 0.2-0.3$

• visible (baryonic) matter $ightarrow \Omega_{
m b} \cong$ 0.02 h⁻²

- dark matter (CDM, WDM, some HDM)
 - $ightarrow \Omega_{\rm DM}$ = $\Omega_{\rm m} \Omega_{\rm b}$

 \Box dark energy (cosmological constant or quintessence) $\rightarrow \Omega_{\Lambda} = 1 - \Omega_{m}$

Every dark matter candidate has a **typical signature** in the Universe. The Universe itself is a **giant laboratory** for testing new physics.

What is mirror matter ?

Idea: there can exist a **hidden mirror sector** of particles and interactions which is the exact duplicate of our observable world. (Lee and Yang, 1956; Foot,Lew,Volkas,1991)

Theory: product $G \times G'$ of **two sectors with the identical particle contents**. Two sectors **communicate via gravity**. A symmetry $P(G \rightarrow G')$, called **mirror parity**, implies that both sectors are described by the same Lagrangians.

 $G_{SM} = SU(3) \times SU(2) \times U(1) \rightarrow standard model of observable particles$ $G'_{SM} = [SU(3) \times SU(2) \times U(1)]' \rightarrow mirror counterpart with analogous particles$

Mirror photons cannot interact with ordinary baryons \Rightarrow dark matter !

Until now mirror particles can exist without violating any known experiment \Rightarrow \Rightarrow we need to compare their astrophysical consequences with observations.

Their microphysics is the same **but**... cosmology is <u>not</u> the same !!

Mirror baryons as dark matter

 $\Omega_r h^2 = 4.2 \cdot 10^{-5} (1 + x^4)$

2 mirror parameters

$$\boldsymbol{\Omega}_{\boldsymbol{m}} \!=\! \boldsymbol{\Omega}_{\boldsymbol{b}} \!+\! \boldsymbol{\Omega}_{\boldsymbol{b}} \,' \!+\! \boldsymbol{\Omega}_{\boldsymbol{C\!D\!M}} \!=\! \boldsymbol{\Omega}_{\boldsymbol{b}} (1\!+\!\beta) \!+\! \boldsymbol{\Omega}_{\boldsymbol{C\!D\!M}}$$

$$x = \frac{T'}{T} \qquad \beta = \frac{\Omega_b'}{\Omega_b}$$

Mirror baryons as dark matter

$\Omega_{\text{TOT}} = \Omega_m + \Omega_r + \Omega_\Lambda \approx 1$

 $\Omega_r h^2 = 4.2 \cdot 10^{-5} (1 + x^4)$

2 mirror parameters

$$\boldsymbol{\Omega}_{\boldsymbol{m}} \!=\! \boldsymbol{\Omega}_{\boldsymbol{b}} \!+\! \boldsymbol{\Omega}_{\boldsymbol{b}} \,' \!+\! \boldsymbol{\Omega}_{\boldsymbol{C\!D\!M}} \!=\! \boldsymbol{\Omega}_{\boldsymbol{b}} (1\!+\!\beta) \!+\! \boldsymbol{\Omega}_{\boldsymbol{C\!D\!M}}$$

$$x = \frac{T'}{T} \qquad \beta = \frac{\Omega_b'}{\Omega_b}$$

BBN bounds

If particles in the two sectors O and M had the same cosmological densities \Rightarrow \Rightarrow conflict with BBN (T ~ 1MeV)!!

If T'=T , mirror photons, electrons and neutrinos $\rightarrow \Delta N_v \approx 6.14$

Bound on the effective number of extra neutrinos: $\Delta N_v < 1 \implies T'/T < 0.64$

Due to the temperature difference, in the M sector all key epochs proceed at somewhat different conditions than in the O sector!

Thermodynamics

$$\rho(t) = \frac{\pi^2}{30} g(T) T^4 \neq \rho'(t) = \frac{\pi^2}{30} g'(T') T'^4 \qquad g' \neq g$$
$$T'(t) \neq T(t) \implies q' = \frac{\pi^2}{30} g'(T') T'^4 \qquad g' \neq g$$

$$s(t) = \frac{2\pi^2}{45}q(T)T^3(t) \neq s'(t) = \frac{2\pi^2}{45}q'(T')T'^3(t) \qquad q' \neq q$$

During the Universe expansion, the two sectors evolve with separately conserved entropies.

$$x \equiv \left(\frac{s'}{s}\right)^{1/3}$$

is time independent

$$\frac{T'(t)}{T(t)} = x \left[\frac{q(T)}{q'(T')} \right]^{1/3} \implies \qquad x = \frac{T'}{T}$$
$$q'(T') \approx q(T)$$

x free parameter !

$$H(t) = \frac{1}{2t} = 1.66 \sqrt{\overline{g}(T)} \frac{T^2}{M_{Pl}} = 1.66 \sqrt{\overline{g}'(T')} \frac{T'^2}{M_{Pl}}$$
$$\overline{g}(T) \approx g(T)(1+x^4) \qquad \overline{g'}(T) \approx g'(T')(1+x^{-4})$$

Thermodynamics

$$\rho(t) = \frac{\pi^2}{30} g(T) T^4 \neq \rho'(t) = \frac{\pi^2}{30} g'(T') T'^4 \qquad g' \neq g$$
$$T'(t) \neq T(t) \implies q' = \frac{\pi^2}{30} g'(T') T'^4 \qquad g' \neq g$$

$$s(t) = \frac{2\pi^2}{45} q(T) T^3(t) \neq s'(t) = \frac{2\pi^2}{45} q'(T') T'^3(t) \qquad q' \neq q$$

During the Universe expansion, the two sectors evolve with separately conserved entropies.

$$x \equiv \left(\frac{s'}{s}\right)^{1/3}$$

is time independent

$$\frac{T'(t)}{T(t)} = x \left[\frac{q(T)}{q'(T')} \right]^{1/3} \implies x = \frac{T}{T}$$
$$q'(T') \approx q(T)$$

X free parameter !

$$H(t) = \frac{1}{2t} = 1.66 \sqrt{\overline{g}(T)} \frac{T^2}{M_{Pl}} = 1.66 \sqrt{\overline{g}'(T')} \frac{T'^2}{M_{Pl}}$$
$$\overline{g}(T) \approx g(T)(1+x^4) \qquad \overline{g'}(T) \approx g'(T')(1+x^{-4})$$

the contribution of the mirror species is negligible in view of the BBN constraint!

Degrees of freedom in a Mirror Universe

Université de Liège

 e^+-e^- annihilation epoch changes according with x

Jniversité

$$N_{\nu} = \frac{\overline{g} - g_e(T) - g_{\gamma}}{7/8 \cdot 2} \cdot \left(\frac{T}{T_{\nu}}\right)^4$$

standard model: $N_{\nu}^{eff} = 3.046$ BBN: $N_{\nu}^{eff} = 3.1_{-1.2}^{+1.4}$ CMB+LSS+Ly α +BAO: $N_{\nu}^{eff} = 4.6_{-1.5}^{+1.6}$

Mangano et al. (astro-ph/0612150) show some tension between degrees of freedom at different epochs.

Mirror matter naturally predicts different degrees of freedom at BBN (1 MeV) and recombination (1 eV) epochs!

Big Bang nucleosynthesis

Fundamental

 $\eta' = \beta x^{-3} \eta$

Interactions

2 fundamental parameters:

degrees of freedom (extra-v families), baryon to photon ratio:

Big Bang nucleosynthesis

Fundamental

 $\eta' = \beta x^{-3} \eta$

Interactions

2 fundamental parameters:

degrees of freedom (extra-v families), baryon to photon ratio:

Structure formation

HLPW 2008

Matter-radiation equality (MRE) epoch

$$1 + z_{eq} = \frac{\Omega_m}{\Omega_r} \approx 2.4 \cdot 10^4 \frac{\Omega_m h^2}{1 + x^4}$$
$$1 + z_{eq} = \frac{1 + \beta}{1 + x^4} (1 + z_{eq})$$

Baryon-photon decoupling (MRD) epoch

$$T_{dec} \approx 0.26 \, eV \implies 1 + z_{dec} = \frac{T_{dec}}{T_0} \approx 1100$$
$$T'_{dec} \approx T_{dec} \implies 1 + z'_{dec} \approx x^{-1} (1 + z_{dec}) \approx 1.1 \cdot 10^3 \, x^{-1}$$

The MRD in the M sector occurs earlier than in the O one!

 $x < x_{eq} \approx 0.046 (\Omega_m h^2)^{-1}$

For small x the M matter decouples before the MRE moment \rightarrow it manifests as the CDM as far as the LSS is concerned (but there still can be a crucial difference at smaller scales which already went non-linear).

The Jeans mass

The Jeans mass

 $M_{\rm J}$

M'_J

∍ a

 $a_{b\gamma} a'_{dec} a_{dec}$

 a_{eq}

$$M_{J}' = \frac{4}{3} \pi \rho_{b}' \left(\frac{\lambda_{J}'}{2}\right)^{3} \qquad \lambda_{J}' = v_{S}' \sqrt{\frac{\pi}{G \rho_{dom}}}$$

$$M_{J}'(a_{dec}') = 3.2 \cdot 10^{14} M_{\odot} \beta^{-1/2} (1+\beta)^{-3/2} \left(\frac{x^{4}}{1+x^{4}}\right)^{3/2} (\Omega_{b} h^{2})^{-2}$$

$$M_{J}'(a_{dec}') \approx \beta^{-1/2} \left(\frac{x^{4}}{1+x^{4}}\right)^{3/2} M_{J}(a_{dec})$$

$$x = 0.6 \qquad \Rightarrow \qquad M_{J}' \approx 0.03 M_{J} \approx 10^{14} M_{\odot}$$

$$M_{J}'_{max}(x_{eq/2}) \approx 0.005 M_{J}'_{max}(x_{eq})$$

$$M_{J}'_{max}(2x_{eq}) \approx 64 M_{J}'_{max}(x_{eq})$$

The Jeans mass

M_J M'J

M_{CDM}

a

a_{eq}

 \mathbf{a}_{d}

Dissipative effects

The M baryons density fluctuations should undergo the strong collisional damping around the time of M recombination due to photon diffusion, which washes out the perturbations at scales smaller than the M Silk scale M_s' .

Differences with the WDM free streaming damping:

- the M baryons should show acustic oscillations in the LSS power spectrum;
- such oscillations, transmitted via gravity to the O baryons, could cause observable **anomalies in the CMB power spectrum**.

Temporal evolution of perturbations

Université de Liège

٩U

Fundamental

Interactions

($\Omega_0 = 1$, $\Omega_m = 0.3$, $\omega_b = 0.02$, h = 0.7; $\lambda \approx 60$ Mpc) **x** dependence

Temporal evolution of perturbations

Université de Liège

($\Omega_0 = 1$, $\Omega_m = 0.3$, $\omega_b = 0.02$, h = 0.7 ; $\lambda \approx 60$ Mpc) **× dependence**

Fundamental

Interactions

Cosmic Microwave Background

500

Multipole moment l

1000

1500

Université Ug

0

10

100

de Liège

 $\frac{\Delta T}{T} \approx 10^{-5}$ $T = (2.725 \pm 0.001) K$

$$\frac{\Delta T(\theta, \phi)}{T} = \sum_{l=0}^{\infty} \sum_{m=-l}^{+l} a_{lm} Y_{lm}(\theta, \phi)$$

$$C_{l} = a_{l}^{2} \equiv \frac{1}{2l+1} \sum_{m=-l}^{+l} |a_{lm}|^{2} = \langle |a_{lm}|^{2} \rangle$$

 $\delta T_l^2 \equiv l(l+1)C_l/2\pi$

Université Ug de Liège

Mirror CMB

We start from a *reference* model

$$\Omega_{tot} = 1$$

$$\Omega_m = 0.30$$

$$\Omega_{CDM} = \Omega_m - \Omega_b' \checkmark$$

$$\Omega_b h^2 = 0.02$$

$$h = 0.70$$

$$n_c = 1.00$$

and we replace CDM...

→ x = 0.3, 0.5, 0.7→ $\Omega_b' = n \Omega_b (n = 1, 2, 3, 4, ...)$

Université Ug de Liège

Mirror CMB

We start from a *reference* model

$$\Omega_{tot} = 1$$

$$\Omega_m = 0.30$$

$$\Omega_{CDM} = \Omega_m - \Omega_b' \checkmark$$

$$\Omega_b h^2 = 0.02$$

$$h = 0.70$$

$$n_s = 1.00$$

and we replace CDM...

- → x = 0.3, 0.5, 0.7→ $\Omega_b' = n \Omega_b (n = 1, 2, 3, 4, ...)$
 - $\mathsf{low} x \to \mathsf{CDM}$
 - small dependence on $\Omega_{\rm b}'$

Large Scale Structure

Field of density perturbations:

$$\delta(\vec{x}) \equiv \frac{\rho(\vec{x}) - \rho_0}{\rho_0} \qquad \delta(\vec{x}) = \frac{1}{(2\pi)^3} \int \delta_k e^{-i\vec{k}\cdot\vec{x}} d^3k$$

The power spectrum:

 $P(k) \equiv \langle \left| \delta_k \right|^2 \rangle = A k^n$

The transfer function: T(k)

$$P(k;t_f) = \left[\frac{D(t_f)}{D(t_i)}\right]^2 T^2(k;t_f) P(k;t_i)$$

Mirror LSS

- $\mathsf{low} \, x \, \to \, \mathsf{CDM}$
- high dependence on x
- high dependence on Ω_{b}'
- higher $\Omega_{b}' \rightarrow \text{ deeper oscillations}$

Comparison with observations

Université de Liège

Comparison with observations

Université de Liège

Mirror dark stars (evolution)

faster evolutionary times!

Mirror summary

OBSERVATIONS

ТНЕОRY

BSERVATIONS

Thermodynamics of the early Universe

Mirror summary

HLPW 2008

BSERVATIONS

Thermodynamics of the early Universe

Big Bang Nucleosynthesis

Mirror summary

Thermodynamics of the early Universe

Big Bang Nucleosynthesis

Star formation

Star evolution

Primordial nuclear abundances

Mirror summary

Thermodynamics of the early Universe

Big Bang Nucleosynthesis

Star formation

Star evolution

Primordial nuclear abundances

MACHOs population

Gravitational waves

Mirror summary

Thermodynamics of the early Universe

Big Bang Nucleosynthesis

Star formation

Star evolution -

 N-body simulations

Galaxy formation and evolution

Primordial nuclear abundances

MACHOs population

Gravitational waves

Mirror summary

Thermodynamics of the early Universe

Big Bang Nucleosynthesis

Star formation

Star evolution -

Structure formation

N-body simulations

Galaxy formation

Primordial nuclear abundances

CMB and LSS power spectra

Gravitational lensing

MACHOs population

Gravitational waves

Mirror summary

Thermodynamics of the early Universe

Big Bang Nucleosynthesis

Star formation

Star evolution

Structure formation

N-body simulations

Galaxy formation and evolution

Primordial nuclear abundances

CMB and LSS power spectra

Gravitational lensing

Galactic DM distribution

MACHOs population

Gravitational waves

Strange events: dark galaxies, bullet galaxies, ...

Mirror summary

Thermodynamics of the early Universe

Big Bang Nucleosynthesi

Star formation

Star evolution

Structure formation

N-body simulations

Galaxy formation and evolution Primordial nuclear abundances

CMB and LSS power spectra

Gravitational lensing

Galactic DM distribution

MACHOs population

Gravitational waves

Strange events: dark galaxies, bullet galaxies, ...

Mirror summary

