Pion-Photon Transition Distribution Amplitudes Joint Meeting HLPW08 Spa, Belgium

Aurore Courtoy

Departamento de Física Teórica Universidad de Valencia

08/03/08

<ロ> (四) (四) (三) (三)

æ

2 Transition Distribution Amplitudes

3 Results in the Nambu - Jona-Lasinio Model

4 Conclusions

<ロ> (四) (四) (三) (三)

æ

Deep Inelastic Scattering

- Bjorken Limit: $x \equiv \frac{Q^2}{2p \cdot q}$
- $d\sigma \propto I^{\mu
 u}W_{\mu
 u}$

•
$$W_{\mu\nu} = ?$$

- Factorization
- $d\sigma = \Sigma_q \int dx f_q(x) d\sigma^{\text{parton}}\left(\frac{y}{x}\right)$
- $f_q(x)$ \Rightarrow Parton Distribution Functions

イロト イヨト イヨト イヨト

• Nonperturbative Objects

Deeply Virtual Compton Scattering

・ロト ・回ト ・ヨト ・ヨト

æ

[Ji, Phys. Rev. Lett. 78 (1997) 610] & [Radyushkin, Phys. Lett. B 380 (1996) 417]

• Nondiagonal in momentum (Small) Momentum Transfer $t = (P' - P)^2$ Longitudinal Momentum asymmetry \Rightarrow Skewness variable $\xi = \frac{(P - P')^+}{(P + P')^+}$

• Generalized Parton Distributions $\Rightarrow f(x, \xi, t)$

Properties of GPDs

<ロ> (四) (四) (三) (三)

æ

Generalized Parton Distributions $\Rightarrow f(x, \xi, t)$

• Sum Rule

First moment of GPDs \Rightarrow Form Factor

$$\int_{-1}^{1} dx \, H(x,\xi,t) = F_1(t)$$

Polynomiality

Higher moments of GPDs \Rightarrow Polynomials in ξ

$$\int_{-1}^{1} dx x^{n-1} H(x,\xi,t) = \sum_{i=0}^{\left\lfloor \frac{n-1}{2} \right\rfloor} A_{n,2i}(t) (-2\xi)^{2i} + \operatorname{Mod}(n+1,2) \ C_n(t) (-2\xi)^n$$

Hadron Structure

イロト イヨト イヨト イヨト

3

1 Deep Inelastic Scattering

- ► ⇒Parton Distribution Functions
- $\blacktriangleright \Rightarrow$ Diagonal in momenta and particle states.
- 2 Deeply Virtual Compton Scattering
 - ► ⇒ Generalized Parton Distributions
 - $\blacktriangleright \Rightarrow$ Diagonal in particle states and Nondiagonal in momenta.
- 8 Hadron-Photon Transitions
 - Nondiagonal in momenta AND Nondiagonal in particle states
 - New Distribution Functions

 \Rightarrow [B. Pire and L. Szymanowski, Phys. Rev. D 71 (2005) 111501]

Framework Definition Estimates

TDA's Framework

- Meson Annihilation into 2 Photons $\bar{M}M \rightarrow \gamma^* \gamma$
- Backward VCS

 $\gamma^* M \to \gamma M$

Factorization

$$\mathcal{M}(Q^2,\xi,t) = \int dx dz \, \Phi_M(z) \, M_h(z,x,\xi) \, \mathsf{TDA}(x,\xi,t)$$

イロト イヨト イヨト イヨト

Э

Meson Pair Production

$$\gamma^* \gamma \to \bar{M}M$$

Framework Definition Estimates

$\pi\text{-}\gamma$ Transition

æ

Soft part

 $\Rightarrow {\rm Transition \ Distribution \ Amplitude} \\ {\rm Mesonic \ case} \Rightarrow \pi^+ \to \gamma \ {\rm or} \ \gamma \to \pi^- \\$

Constraint on
$$\xi$$
: $\frac{t}{2m_{\pi}^2 - t} < \xi < 1$

Vector and Axial-vector currents

Lorentz Structure for the matrix element

イロト イヨト イヨト イヨト

Structure for $\pi^+
ightarrow {\it I}^+
u_{\it I} \gamma$

Framework Definition Estimates

$$\pi^+ \to I^+ \nu_I \gamma$$

$$\mathcal{M}(\pi^+(P) \to I(s) \, \nu(r) \, \gamma(P')) = \mathcal{M}_{SD} + \mathcal{M}_{IB}$$

• $\mathcal{M}_{SD} \Rightarrow F_V(t)$ and $F_A(t)$

• $\mathcal{M}_{IB} \Rightarrow$ Inner Bremsstrahlung of Lepton and Pion

[M. Moreno, Phys. Rev. D 16 (1977) 720]

The lepton Bremsstrahlung does not contribute to the hadronic currents

 $\mathcal{M} \propto l^{\mu} \left\{ \langle \gamma(P') | \bar{q}(0) \gamma_{\mu} \tau^{-} q(0) | \pi^{+}(P) \rangle - \langle \gamma(P') | \bar{q}(0) \gamma_{\mu} \gamma_{5} \tau^{-} q(0) | \pi^{+}(P) \rangle \right\} \\ - \varepsilon^{\nu} l_{\mu\nu} i \sqrt{2} f_{\pi} P^{\mu} \\ + \Box \succ \langle \overline{\mathcal{O}} \rangle \leftarrow \overline{\mathbb{C}} \succ \langle \overline{\mathbb{C}} \rangle \leftarrow \overline{\mathbb{C}} \rangle = \langle \overline{\mathbb{C}} \rangle = \langle \overline{\mathbb{C}} \rangle - \langle \overline{\mathbb{C}} \rangle \langle \overline{\mathbb{C}} \rangle = \langle \overline{\mathbb{C}} \rangle \langle \overline{\mathbb{C}} \rangle = \langle \overline{\mathbb{C}} \rangle \langle \overline{\mathbb{C}} \rangle \langle \overline{\mathbb{C}} \rangle = \langle \overline{\mathbb{C}} \rangle \langle \overline{\mathbb{C}} \rangle \langle \overline{\mathbb{C}} \rangle = \langle \overline{\mathbb{C}} \rangle \langle \overline{\mathbb{C}} \rangle \langle \overline{\mathbb{C}} \rangle \langle \overline{\mathbb{C}} \rangle = \langle \overline{\mathbb{C}} \rangle \langle$

Framework Definition Estimates

Definition of the π - γ TDAs

æ

- $\langle \gamma(P) | \bar{q}(0) \gamma_{\mu} \tau^{-} q(0) | \pi^{+}(P') \rangle = -i \epsilon \varepsilon^{\nu} \epsilon_{\mu \nu \rho \sigma} P'^{\rho} P^{\sigma} F_{V}(t)$
- $\langle \gamma(P)|\bar{q}(0)\gamma_{\mu}\gamma_{5}\tau^{-}q(0)|\pi^{+}(P')\rangle = e\varepsilon^{\nu}(P'_{\mu}P_{\nu} g_{\mu\nu}P'.P) F_{A}(t)$ $+ e\varepsilon^{\nu}\left[(P'-P)_{\mu}P_{\nu}\frac{2\sqrt{2}f_{\pi}}{m_{\pi}^{2}-t} - \sqrt{2}f_{\pi}g_{\mu\nu}\right]$
- From the hadronic currents to the parton distribution amplitudes

Fourier Transform of Matrix element of operators at a light-like separation

- Transition Form Factors F_V(t) and F_A(t) ⇒ V(x, ξ, t) and A(x, ξ, t)
- $f_{\pi} \Rightarrow \text{Pion Distribution Amplitude } \phi(x)$
- To leading twist

$$\begin{split} &\int \frac{dz^{-}}{2\pi} \; e^{ixp^{+}z^{-}} \left\langle \gamma(P') | \bar{q} \left(-\frac{z}{2}\right) \; \gamma_{\mu} \; \tau^{-}q \left(\frac{z}{2}\right) \left|\pi^{+}(P)\right\rangle |_{z^{+}=z^{\perp}=0} = \frac{i}{p^{+}} \; e\varepsilon^{\nu} \epsilon_{\mu\nu\rho\sigma} p^{\rho} \Delta^{\sigma} \frac{V(x,\xi,t)}{\sqrt{2}f_{\pi}} \\ &\int \frac{dz^{-}}{2\pi} \; e^{ixp^{+}z^{-}} \left\langle \gamma(P') | \bar{q} \left(-\frac{z}{2}\right) \; \gamma_{\mu} n^{\mu} \gamma_{5} \; \tau^{-}q \left(\frac{z}{2}\right) \left|\pi^{+}(P)\right\rangle \; |_{z^{+}=z^{\perp}=0} = \frac{1}{p^{+}} \; e \left(\bar{\varepsilon}^{\perp} \cdot \vec{\Delta}^{\perp}\right) \frac{A(x,\xi,t)}{\sqrt{2}f_{\pi}} \\ &\quad + \frac{1}{p^{+}} \; e \left(\varepsilon \cdot \Delta\right) \sqrt{2}f_{\pi} \; \frac{2}{m_{\pi}^{2} - t} \; \phi \left(\frac{x+\xi}{2\xi}\right) \end{split}$$

Framework Definition Estimates

Back to Meson Pair Production

Cross Section Estimates

[Lansberg et al., Phys. Rev. D 73 (2006) 074014]

 $\rho_L^{\pm} \pi^{\mp}$ Production

- $e\gamma \to e\rho_L \pi \Rightarrow \gamma_L^* \gamma \to \rho_L^\pm \pi^\mp$
- Φ_{ρ1}: vector DA
- Vector TDA enters the cross section

 $\pi^{\pm}\pi^{\mp}$ Production

- $e\gamma \rightarrow e\pi\pi \Rightarrow \gamma_L^*\gamma \rightarrow \pi^{\pm}\pi^{\mp}$
- Φ_π: axial DA
- Axial TDA enters the cross section

・ロト ・回ト ・ヨト ・ヨト

æ

Framework Definition Estimates

Distribution Functions as Functions of x, ξ , t

- Experiments require Estimates for the cross sections
- Nonperturbative Objects
- Approaching QCD by Models, Effective theories,...
- $\textbf{Pion} \rightarrow \textbf{Chiral Models}$

・ロン ・回と ・ヨン・

æ

Framework Definition Estimates

Models

æ

Distribution Functions as Functions of x, ξ , t

- Experiments require Estimates for the cross sections
- Nonperturbative Objects
- Approaching QCD by Models, Effective theories,...
- $\textbf{Pion} \rightarrow \textbf{Chiral Models}$
- \Rightarrow Nambu Jona-Lasinio Model

Pion as Goldstone boson

Pion as collective mode of fermions in the sense of Bethe-Salpeter

[S. P. Klevansky, Rev. Mod. Phys. 64 (1992) 649.]

[A.C. & S. Noguera, Phys. Rev. D 76 (2007) 094026]

<ロ> (四) (四) (三) (三)

Vector TDA

$$\int \frac{dz^{-}}{2\pi} e^{ixp^{+}z^{-}} \langle \gamma(P') | \bar{q} \left(-\frac{z}{2} \right) \gamma_{\mu} \tau^{-} q \left(\frac{z}{2} \right) |\pi^{+}(P) \rangle |_{z^{+}=z^{\perp}=0} = \frac{i}{p^{+}} e^{\varepsilon^{\nu}} \epsilon_{\mu\nu\rho\sigma} p^{\rho} \Delta^{\sigma} \frac{V^{\pi^{+}}(x,\xi,t)}{\sqrt{2t_{\pi}}}$$

$$= \text{Isospin Relations}$$

$$= V^{\pi^{+}}(x,\xi,t) = Q_{d} v_{u^{-}d}^{\pi^{+}}(x,\xi,t) + Q_{u} v_{d^{-}\bar{u}}^{\pi^{+}}(x,\xi,t)$$

$$= V^{\pi^{+}}(x,\xi,t) = v_{u^{-}d}^{\pi^{+}}(-x,\xi,t)$$

$$= \text{Even functions of } \xi$$

$$= \frac{0.08}{0.04} \int_{0.04}^{0.04} \int_{0.04}^{0.05} \int_$$

Aurore Courtoy

1.00

1 -

0.50

0.00

х

 $V(x, \xi, t)$

-0.04 -1.00

-0.50

-0.50

0.00

0.50

1.00

æ

-0.02 -0.03 L -1.00

Axial TDA

Э

$$\int \frac{dz^{-}}{2\pi} e^{ixp^{+}z^{-}} \langle \gamma(P') | \bar{q} \left(-\frac{z}{2}\right) \gamma_{\mu} n^{\mu} \gamma_{5} \tau^{-} q \left(\frac{z}{2}\right) |\pi^{+}(P)\rangle |_{z^{+}=z^{\perp}=0} = \frac{1}{p^{+}} e\left(\vec{\varepsilon}^{\perp}.\vec{\Delta}^{\perp}\right) \frac{A^{\pi^{+}}(x,\xi,t)}{\sqrt{2}f_{\pi}} + \frac{1}{p^{+}} e\left(\varepsilon.\Delta\right) \sqrt{2}f_{\pi} \frac{2}{m_{\pi}^{2}-t} \phi\left(\frac{x+\xi}{2\xi}\right)$$

- Quark-antiquark with pion quantum numbers
 - Related to Pion DA
 - ▶ ⊃ Pion Pole
- Isospin Relations

•
$$A^{\pi^+}(x,\xi,t) = Q_d a^{\pi^+}_{u \to d}(x,\xi,t) + Q_u a^{\pi^+}_{d \to \bar{u}}(x,\xi,t)$$

• $a^{\pi^+}_{d \to \bar{u}}(x,\xi,t) = -a^{\pi^+}_{u \to d}(-x,\xi,t)$

イロト イヨト イヨト イヨト

Axial TDA II

Э

イロト イヨト イヨト イヨト

2 distinct behaviors according to the sign of ξ :

Results

Vector TDA

Sum Rule

•
$$\int_{-1}^{1} dx V^{\pi^+}(x,\xi,t) = \frac{\sqrt{2}f_{\pi}}{m_{\pi}} F_{V}^{\pi^+}(t)$$

• Our result: $F_V^{\pi^+}(0) = 0.0242$

In agreement with PDG: $F_V(0) = 0.017 \pm 0.008$

Polynomiality

$$\int_{-1}^{1} dx \, x^{n-1} \, V^{\pi^+}(x,\xi,t) = \sum_{i=0}^{n-1} \, C_{n,i}(t) \, \xi^i$$

- Numerically verified
- Chiral Limit $\Rightarrow i \rightarrow 2i$

Axial TDA

Sum Rule

- $\int_{-1}^{1} dx A^{\pi^+}(x,\xi,t) = \frac{\sqrt{2}f_{\pi}}{m_{\pi}} F_{A}^{\pi^+}(t)$
- Our result: $F_A^{\pi^+}(0) = 0.0239$

Twice the value of the PDG:

 $F_A(0) = 0.0115 \pm 0.0005$

Polynomiality

$$\int_{-1}^{1} dx \, x^{n-1} \, A^{\pi^{+}}(x,\xi,t) = \sum_{i=0}^{n-1} \, C'_{n,i}(t) \, \xi^{i}$$

・ロン ・回と ・ヨン・

æ

Numerically verified

Conclusions I

イロン イボン イヨン イヨン 三日

Conclusions

 $V(x,\xi,t)$ and $A(x,\xi,t)$ (General Arguments)

- Introduction of an additional term \rightarrow Pion Pole contribution
- Hence \rightarrow Sum Rule recovered
- Isospin Relations :

$$V^{\pi^{+}}(x,\xi,t) = -\frac{1}{2} V^{\pi^{+}}(-x,\xi,t) \quad \& \quad A^{\pi^{+}}(x,\xi,t) = \frac{1}{2} A^{\pi^{+}}(-x,\xi,t)$$

for $|\xi| < x < 1$.

Conclusions II

Conclusions

Calculation of the pion-photon TDAs in the NJL model

Covariant Bethe-Salpeter approach

GPDs' features extended to TDAs

- Support $[-1, 1] \rightarrow \mathsf{OK}$
- Sum Rules recovered \rightarrow OK
- Polynomiality recovered \rightarrow OK
 - $V(x,\xi,t)$:
 - $\mathsf{Chiral \ Limit} \Rightarrow \mathsf{Polynomials} \supset \mathsf{even} \ \mathsf{powers} \ \mathsf{in} \ \xi$
 - $A(x,\xi,t)$:

General Expression for the entire axial matrix element

The end.

(日) (四) (三) (三) (三)

In progress

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ → 臣 → の Q ()

Introduction of additional term \rightarrow Pion Pole contribution

\Rightarrow Contribution to the cross section for meson pair production:

 $\mathcal{M}_{\pi\pi} = \mathcal{M}_{TDA} + \mathcal{M}_{pion pole}$

$$\gamma^{*(q)}$$
 $\gamma^{*(q)}$ $\gamma^{(q-\Delta)}$

Comparison I

æ

<ロ> (四) (四) (三) (三)

[W. Broniowski and E. R. Arriola, arXiv:hep-ph/0701243]

& [B. C. Tiburzi, Phys. Rev. D 72 (2005) 094001]

- Need for the pion pole contribution highlighted in both works
- Value of the axial form factor: twice the PDG value in both works
- Double Distributions: polynomiality recovered by definition This work: first study of the polynamiality property of TDAs

Comparison II

Shape of the TDAs: Discontinuity of the 1st derivative at $x = \pm \xi$ in both

- B& RA: similar to ours for the vectorial case
 - So is the χ limit

• T: rather peaked TDAs at $x = \pm \xi$

Weak binding ightarrow ok peaks BUT not at $x=\pm\xi$

Aurore Courtoy Pion-Photon TDAs

Outlook

æ

- Cross section estimates
 - $\Rightarrow~$ Study of the pion pole contribution
- Evolution of TDAs
- $N\bar{N} \rightarrow \gamma^{\star}\pi$

[Lansberg, Pire and Szymanowski, Phys. Rev. D 75

(2007) 074004]

Operators with 3 quark fields

イロト イヨト イヨト イヨト