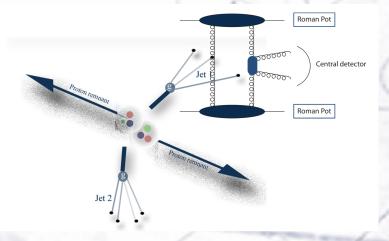
Central Exclusive Dijet Production HLPW08

Alice Dechambre Fundamental Interactions in Physics and Astrophysics, University of Liège

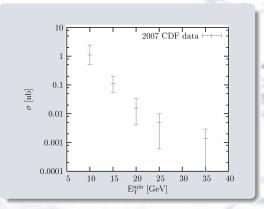
In collaboration with: J.R. Cudell, O.F. Hernández and I.P. Ivanov


07/03/08

- 1 Central Exclusive Production
 - Definition and Data

- 2 Central Exclusive Dijet Calculation
 - Ingredients
 - Uncertainties

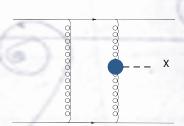
3 Conclusions and Outlook


 \Rightarrow End of 2007, data on Exclusive Dijet events at the Tevatron $p\bar{p}$ collider

 \Rightarrow Characteristics: Rapidity gap between the two jets and the remaining protons + one the forward proton can be detected

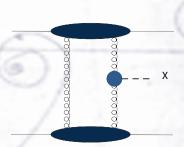
Cross section of central exclusive high- E_T dijets, E_T = 10-35 GeV:

[T. Aaltonen et al. [CDF Run II Collaboration], arXiv:0712.0604 [hep-ex]]

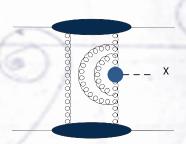


• Small cross section: $\sim 2 \times 10^5$ exclusive events

Central Exclusive Production of dijet or anything

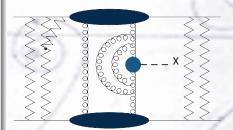

$$\mathsf{pp} \to \mathsf{p} + \mathsf{gap} + \mathsf{X} + \mathsf{gap} + \mathsf{p}$$

- Lowest order QCD calculation at the parton level: the produced system is in a colour singlet state
- Embedding the partons in the
- Add the virtual corrections via a
- Take into account of the proton



Standard scheme of a Central Exclusive Production calculation:

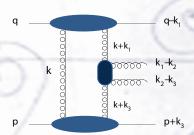
- Lowest order QCD calculation at the parton level: the produced system is in a colour singlet state
- Embedding the partons in the proton via a Proton Impact Factor
- Add the virtual corrections via a Sudakov Form Factor
- Take into account of the proton rescattering corrections



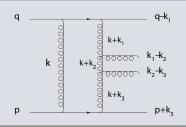
- Lowest order QCD calculation at the parton level: the produced system is in a colour singlet state
- Embedding the partons in the proton via a Proton Impact Factor
- Add the virtual corrections via a Sudakov Form Factor
- Take into account of the proton rescattering corrections

Standard scheme of a Central Exclusive Production calculation:

- Lowest order QCD calculation at the parton level: the produced system is in a colour singlet state
- Embedding the partons in the proton via a Proton Impact Factor
- Add the virtual corrections via a Sudakov Form Factor
- Take into account of the proton rescattering corrections

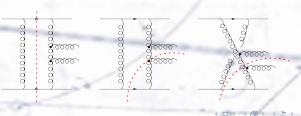


Under Theoretical Control


Lowest order QCD calculation

Not Under Theoretical Control

- Proton Impact Factor
- Sudakov Form Factor
- Proton rescattering



1: Lowest Order QCD calculation

$$k_i = \alpha_i p^{\mu} + \beta_i q^{\mu} + \mathbf{k}_i$$
$$\frac{\mathbf{k}_i^2}{s} \ll \alpha_i, \beta_i \ll 1$$
$$\mathbf{k}_2 \gg \mathbf{k}_1, \mathbf{k}_3$$

⇒ Lots of diagrams but work simplifies when imaginary part is analyzed: Cancellations among different diagrams and cuts

Differential cross section for the dijet Central Exclusive Production:

$$\mathrm{d}\sigma \propto \frac{g^{12}}{(\mathbf{k}_2^2)^2} \Big| \int \frac{\mathrm{d}^2\mathbf{k}}{\mathbf{k}^2(\mathbf{k} + \mathbf{k}_1)^2(\mathbf{k} + \mathbf{k}_3)^2} \times \mathcal{M}(\mathbf{k}^2) \Big|^2$$

Where C_0 and C_2 are products of \mathbf{k} , \mathbf{k}_1 and \mathbf{k}_3

$$|M_0|^2 = 1$$
, $|M_2|^2 = \frac{u_{gg}^4 + t_{gg}^4}{s_{gg}^4}$

End of the Analytic QCD Calculation

Differential cross section for the dijet Central Exclusive Production:

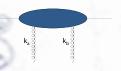
$$\mathrm{d}\sigma \propto rac{g^{12}}{(\mathbf{k}_2^2)^2} \Big| \int rac{\mathrm{d}^2\mathbf{k}}{\mathbf{k}^2(\mathbf{k}+\mathbf{k}_1)^2(\mathbf{k}+\mathbf{k}_3)^2} (C_0|M_0|^2 + C_2|M_2|^2) \Big|^2$$

Where C_0 and C_2 are products of \mathbf{k} , \mathbf{k}_1 and \mathbf{k}_3

$$|M_0|^2 = 1$$
, $|M_2|^2 = \frac{u_{gg}^4 + t_{gg}^4}{s_{gg}^4}$

Differential cross section for the dijet Central Exclusive Production:

$$\mathrm{d}\sigma \propto \frac{g^{12}}{(\textbf{k}_2^2)^2} \Big| \int \frac{\mathrm{d}^2\textbf{k}}{\textbf{k}^2(\textbf{k}+\textbf{k}_1)^2(\textbf{k}+\textbf{k}_3)^2} (C_0|M_0|^2 + C_2|M_2|^2) \Big|^2$$

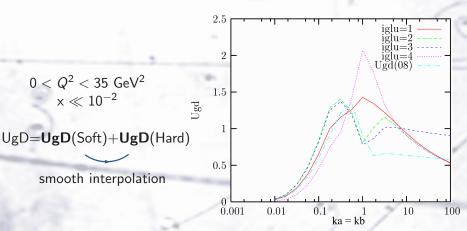

Where C_0 and C_2 are products of \mathbf{k} , \mathbf{k}_1 and \mathbf{k}_3

$$|M_0|^2 = 1$$
, $|M_2|^2 = \frac{u_{gg}^4 + t_{gg}^4}{s_{gg}^4}$

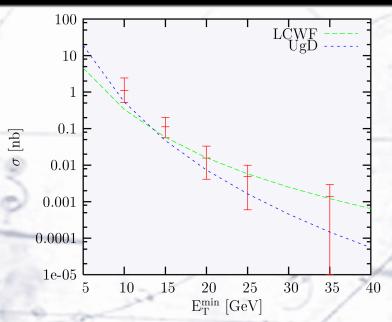
End of the Analytic QCD Calculation

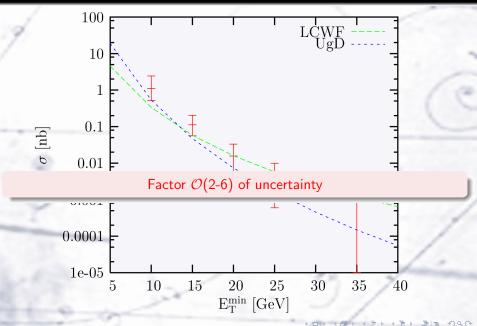
2: Proton Impact Factor

$$\int d\mathbf{k}^2 \cdots \rightarrow \int d\mathbf{k}^2 \ldots \phi(\mathbf{k}, \mathbf{k} + \mathbf{k}_1) \phi(\mathbf{k}, \mathbf{k} + \mathbf{k}_3)$$

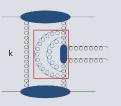

Soft quantity → models and fit must be used

- Light Cone Wave Function: $\phi_{LCWF}(\mathbf{k}_a, \mathbf{k}_b) = \mathcal{E}_1(\mathbf{k}_a + \mathbf{k}_b) - \mathcal{E}_2(\mathbf{k}_a, \mathbf{k}_b)$
- Evolving partons in a Unintegrated Gluon Density:

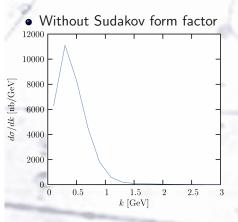

$$C_F N_c rac{g^2}{4\pi^2} \phi_{UgD}(\mathbf{k_a},\mathbf{k}_b)
ightarrow \mathcal{F}(x,\mathbf{k_a},\mathbf{k}_b)$$

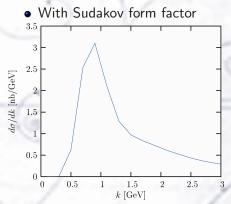

$\mathcal{F}(x, \mathbf{k}_a, \mathbf{k}_b)$: Fit to the proton structure function F_2 at HERA

[I. P. Ivanov, N. N. Nikolaev and A. A. Savin, Phys. Part. Nucl. 37 (2006) 1 [arXiv:hep-ph/0501034]]



◆□→ ◆□→ ◆□→ ◆□→ ▼□□ ♥9<0</p>

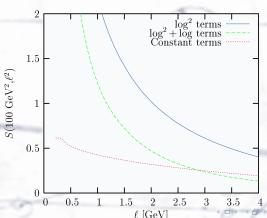

3: Sudakov Form Factor



Virtual corrections

 \Rightarrow Large double logarithms $\sim log^2(M_{gg}^2)$

[In QED, V. V. Sudakov, Sov. Phys. JETP 3 (1956) 65]

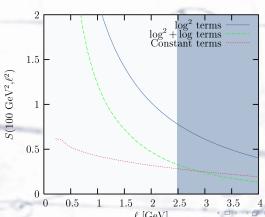

Main effect of the Sudakov form factor:

- Changes the mean value of loop momentum k
- ullet Strongly supresses the cross section: factor $\mathcal{O}(100\text{-}1000)$

Sudakov form factor: $e^{S(\mu,\ell)}$

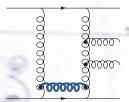
$$S(\mu, \ell) = \left[\alpha_s(M_{gg}^2) \left(a \log^2 \left(\frac{M_{gg}^2}{\ell^2} \right) + b \log \left(\frac{M_{gg}^2}{\ell^2} \right) + c \right) \right]$$

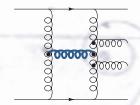
BUT:

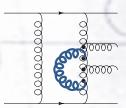


Dechambre Alice (IFPA/ULg)

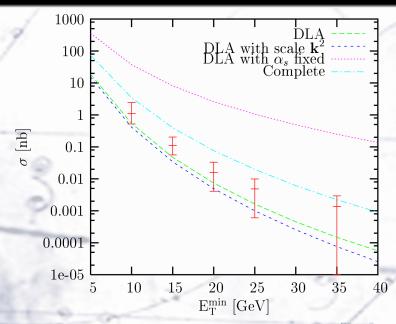
Sudakov form factor: $e^{S(\mu,\ell)}$

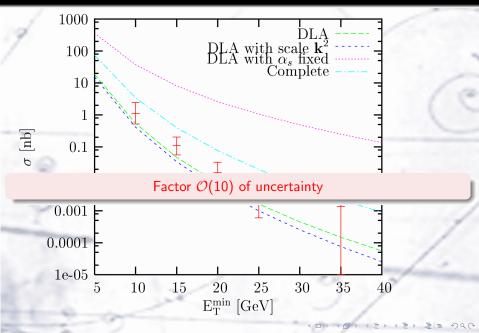

$$S(\mu, \ell) = \left[\alpha_s(M_{gg}^2) \left(a \log^2 \left(\frac{M_{gg}^2}{\ell^2} \right) + b \log \left(\frac{M_{gg}^2}{\ell^2} \right) + c \right) \right]$$


BUT:



Comments:


Other diagrams, not included here, contain large single logarithms



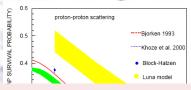
- Large corrections?
- Exponentiation?

4: Gap survival S^2

Protons rescattering might destroy the gap

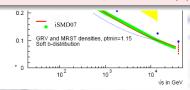
[L. Frankfurt, C. E. Hyde-Wright, M. Strikman and C. Weiss, Phys. Rev. D 75 (2007) 054009]

 Different calculations predict anything from 15% to 35% of the cross section

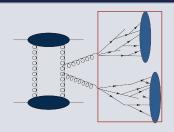

[R. M. Godbole, A. Grau, G. Pancheri and Y. N. Srivastava, arXiv:0801.4887 [hep-ph]]

4: Gap survival S^2

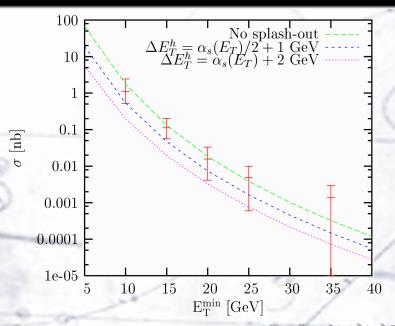
Protons rescattering might destroy the gap

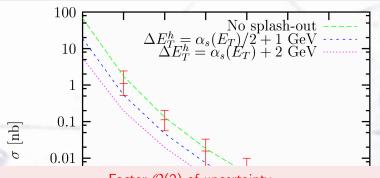

[L. Frankfurt, C. E. Hyde-Wright, M. Strikman and C. Weiss, Phys. Rev. D 75 (2007) 054009]

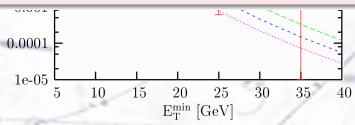
 Different calculations predict anything from


Factor $\mathcal{O}(3)$ of uncertainty

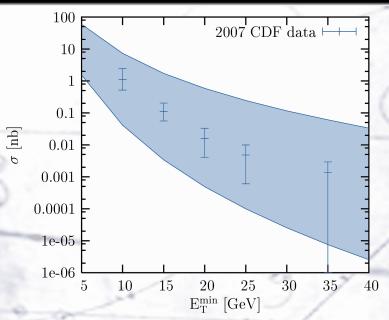
[R. M. Godbole, A. Grau, G. Pancheri and Y. N. Srivastava, arXiv:0801.4887 [hep-ph]]

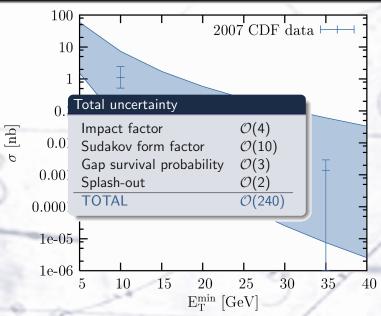

10/00


4: Experimental corrections → Splash-out


- E_T: Measures have been done at the hadron level
 - \rightarrow Correction to the parton level

[V. A. Khoze, A. B. Kaidalov, A. D. Martin, M. G. Ryskin and W. J. Stirling, arXiv:hep-ph/0507040]





- 1 Central Exclusive Production
 - Definition and Data

- 2 Central Exclusive Dijet Calculation
 - Ingredients
 - Uncertainties

3 Conclusions and Outlook

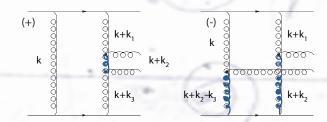
Pre-Conclusions

- Numerical results are strongly sensitive to the corrections
- The current uncertainties of the calculation seem to be underestimated → we are talking about a factor 240 of uncertainty

Outlook: Higgs CEP cross section

- Higgs CEP is affected by the same uncertainties
- Dijet cross section can be used to fine tune the pieces and leads to prediction of the Higg CEP cross section
- ullet Preliminary results are $\sigma\sim$ 1-5 fb at LHC

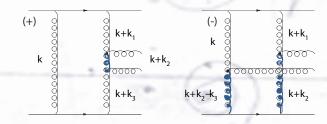
Pre-Conclusions


- Numerical results are strongly sensitive to the corrections
- The current uncertainties of the calculation seem to be underestimated → we are talking about a factor 240 of uncertainty

Outlook: Higgs CEP cross section

- Higgs CEP is affected by the same uncertainties
- Dijet cross section can be used to fine tune the pieces and leads to prediction of the Higg CEP cross section
- ullet Preliminary results are $\sigma \sim$ 1-5 fb at LHC

Open question:


 $\mathsf{Sudakov} \sim \mathcal{O}(100\text{-}1000)$

Sudakov \sim ?

Diagram with gluons emitted from different legs is supressed at large ${\bf k}_2$ because it contains one more gluon propagator

ightarrow diagram of the order of $\mathcal{O}(\frac{1}{\mathbf{k}_2^2})$

Open question:

 $\mathsf{Sudakov} \sim \mathcal{O}(100\text{-}1000)$

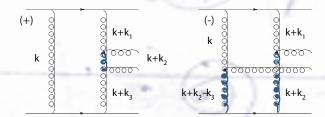

Sudakov \sim ?

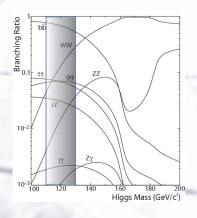
Diagram with gluons emitted from different legs is supressed at large ${\bf k}_2$ because it contains one more gluon propagator

 \rightarrow diagram of the order of $\mathcal{O}(\frac{1}{k_2^2})$

Open question:

Sudakov $\sim \mathcal{O}(100\text{-}1000)$

Sudakov \sim ?


The Sudakov form factor should be smaller

→ The second diagram is not longer negligible

Implication for Higgs bosons searches: Large Hadron Collider → Higgs discovery channel via Higgs CEP

- Search strategy depends of the Higgs decay preferences
- In the dominant decay channel, light Higgs ($\leq 130 \text{ GeV}$) will be hidden in the QCD background

⇒ Understanding the pieces of the dijet CEP can lead to a prediction of the Higgs CEP cross section

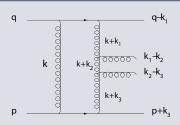
Imaginary part of the amplitude:

$$\mathrm{Im} M = \frac{g^4}{4\pi^2} \frac{\delta^{ab}}{4N^2} \int \frac{\mathrm{d}^2 \mathbf{k}}{\mathbf{k}^2 (\mathbf{k} + \mathbf{k}_1)^2 (\mathbf{k} + \mathbf{k}_3)^2} \; \sum_{\lambda_i} j_{\lambda_1}^{(1)*} j_{\lambda_2}^{(2)*} \; \mathcal{M}_{gg}(\lambda_1 \lambda_2 \to \lambda_3 \lambda_4)$$

$$g^*g^* o gg$$

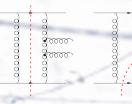
- j_{λ} are quark's current
- $\mathcal{M}_{gg}(\lambda_1\lambda_2 \to \lambda_3\lambda_4)$ is the $gg \to gg$ amplitude

Imaginary part of the amplitude:


$$\operatorname{Im} \mathcal{M} = \frac{g^4}{4\pi^2} \frac{\delta^{ab}}{4N^2} \int \frac{\mathrm{d}^2 \mathbf{k}}{\mathbf{k}^2 (\mathbf{k} + \mathbf{k}_1)^2 (\mathbf{k} + \mathbf{k}_3)^2} \underbrace{\sum_{\lambda_i} j_{\lambda_1}^{(1)*} j_{\lambda_2}^{(2)*} \underbrace{\mathcal{M}_{gg}(\lambda_1 \lambda_2 \to \lambda_3 \lambda_4)}}_{\mathcal{M}_{gg}(\lambda_1 \lambda_2 \to \lambda_3 \lambda_4)}$$

$g^*g^* o gg$

- i_{λ} are quark's current
- ullet $\mathcal{M}_{gg}(\lambda_1\lambda_2 o \lambda_3\lambda_4)$ is the gg o gg amplitude



1: Lowest Order QCD calculation

$$k_i = \alpha_i p^{\mu} + \beta_i q^{\mu} + \mathbf{k}_i$$
$$\frac{\mathbf{k}_i^2}{s} \ll \alpha_i, \beta_i \ll 1$$
$$\mathbf{k}_2 \gg \mathbf{k}_1, \mathbf{k}_3$$

⇒ Lots of diagrams but work simplifies when imaginary part is analyzed: Cancellations among different diagrams and cuts

$$\begin{split} T &= e^{-S(\mu^2,\ell^2)} \\ S(\mu^2,\ell^2) &= \int_{\ell^2}^{\mu^2} \frac{\mathrm{d}\mathbf{q}^2}{\mathbf{q}^2} \frac{\alpha_s(\mathbf{q}^2)}{2\pi} \int_0^{1-\Delta} \mathrm{d}z [z P_{gg} + N_f P_{qg}] \end{split}$$

- μ^2 : Energy scale of the sub-process $\mathcal{O}(M_{gg}^2)$
- ℓ^2 : Virtuality from which the evolution starts
- α_s : Can be fixed at some arbitrary scale or evolved
- P_{gg} , P_{qg} : Splitting function
- Δ : Cut-off that depends on the prescription \rightarrow leads to factor $\mathcal{O}(2)$ to factor $\mathcal{O}(10)$

[Y. L. Dokshitzer, D. Diakonov and S. I. Troian, Phys. Rept. 58 (1980) 269.
[V. A. Khoze, A. D. Martin and M. G. Ryskin, Eur. Phys. J. C 48 (2006) 467]