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• Calculation of QCD amplitudes

- Color decomposition
- Spinor-helicity formalism
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• Twistor techniques
- Tree-level techniques
- One-loop techniques



• Most of the events observed at the LHC will be QCD 
events.

• Many interesting signatures correspond to a multijet final 
state, e.g.

MotivationOutline Motivation Décomposition des couleurs Relations de récurrence BCF Relations de récurrence incluant la couleur

Motivation
! La plupart des évévements observés au LHC seront des

événements de QCD.

! Exemples d’événements qu’on veut étudier:
- t t̄ H → !ν + 6 jets, 8 jets
- p p → q̃ q̃ → (q χ̃0) (q χ̃0) → (q cds) (q cds)

p p → 8 jets

! Bruits de fond QCD importants!
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Applications of twistor methods in QCD



• The background to the interesting LHC signatures is 
in very often given by high-multiplicity QCD events.

• Precision measurements require theory predictions 
beyond leading order.

Motivation

σ = αn
s σ0 + αn+1

s σ1 +O(αn+2
s ) (1)

〈ij〉 ∼ (pi + pj)2 (2)

1

LO NLO



Feynman diagrams
• Standard technique for the calculation of amplitudes 

in quantum field theory

Feynman diagrams

• Example: 

6 diagrams at tree level.
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e+ e− → γ γ γ (1)

〈ij〉 =
√

(pi + pj)2 (2)

1



• Example of a QCD process g g → g g g (1)

1

Diagrams by MadGraph  g g -> g g g  
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45 Feynman diagrams at tree level.

…

Feynman diagrams



• The number of Feynman diagrams is growing 
extremely fast with the number of external particles.

• 6 external gluons:      510 

• 7 external gluons:      5040

• 8 external gluons:      40320

• …

• The reason for this fast growth in complexity is color...

Feynman diagrams



• Solution: Factor out the color information!

Color decomposition

• The color-ordered amplitudes

Figure 1: Diagrammatic equations for simplifying SU(Nc) color algebra. Curly lines (“gluon
propagators”) represent adjoint indices, oriented solid lines (“quark propagators”) represent
fundamental indices, and “quark-gluon vertices” represent the generator matrices (T a) ̄

i .

simplify a sample diagram for five-gluon scattering at tree level. The final line
is the diagrammatic representation of a single trace, Tr

(

T a1T a2T a3T a4T a5
)

,
plus all possible permutations. Notice that the −1/Nc terms in Eq. 2 do not
contribute here, because the photon does not couple to gluons.

It is easy to see that any tree diagram for n-gluon scattering can be re-
duced to a sum of “single trace” terms. This observation leads to the color
decomposition of the the n-gluon tree amplitude,6

Atree
n ({ki, λi, ai}) = gn−2

∑

σ∈Sn/Zn

Tr (T aσ(1) · · ·T aσ(n)) Atree
n (σ(1λ1 ), . . . , σ(nλn)).

(4)

Here g is the gauge coupling ( g2

4π = αs), ki, λi are the gluon momenta and
helicities, and Atree

n (1λ1 , . . . , nλn) are the partial amplitudes, which contain all
the kinematic information. Sn is the set of all permutations of n objects, while
Zn is the subset of cyclic permutations, which preserves the trace; one sums
over the set Sn/Zn in order to sweep out all distinct cyclic orderings in the
trace. The real work is still to come, in calculating the independent partial
amplitudes Atree

n . However, the partial amplitudes are simpler than the full
amplitude because they are color-ordered: they only receive contributions from
diagrams with a particular cyclic ordering of the gluons. Because of this, the
singularities of the partial amplitudes, poles and (in the loop case) cuts, can
only occur in a limited set of momentum channels, those made out of sums of
cyclically adjacent momenta. For example, the five-point partial amplitudes
Atree

5 (1λ1 , 2λ2 , 3λ3 , 4λ4 , 5λ5) can only have poles in s12, s23, s34, s45, and s51,
and not in s13, s24, s35, s41, or s52, where sij ≡ (ki + kj)2.

6

- correspond to a specific color-ordering.
- depend only on the momenta and helicities of the gluons.
   (but not on color!)

• This construction can be easily extended to quarks as 
well as beyond tree-level.



• As the color-ordered amplitudes depend only on the 
momenta and helicities, they can be easily calculated 
using spinor-helicity formalism.

Spinor-helicity formalism

where                       .

e+ e− → γ γ γ (1)

〈ij〉 ∼
√

(pi + pj)2 (2)

1

Atree
5 (1−, 2−, 3+, 4+, 5+) =

〈12〉4

〈12〉〈23〉〈34〉〈45〉〈51〉

1

g g → g g g (1)

1

• Example: The color-ordered amplitude                 for a 
specific helicity assignment:



• The color-ordered amplitudes can be calculated via:

Spinor-helicity formalism

- Color-ordered Feynman rules.

- Recursive techniques (Berends-Giele recursion)

- The recently introduced twistor techniques...



Twistors in QCD
• In 1967, R. Penrose introduces a new mathematical object 

called a twistor.

• In 2003, E. Witten conjectures a duality between QCD and 
a certain type of string theory based on Pensore’s twistor 
space.

• Main message:

„Be complex, but stay on-shell!“

[hep-th/0312171]



Twistors in QCD
• Tree-level:

- BCFW recursion
- CSW formalism

• One-loop:

- Generalized unitarity



BCFW recursion
• First conjectured by Britto, Cachazo and Feng, proven 

analytically by Witten.

2.5. BCF recursive relations 23

2.5 BCF recursive relations

One of the main results arising from the twistor approach to QCD are the so called BCF recursive

relations, first proposed in Ref. [13], and proven analytically by Witten in Ref. [14]. The aim of

this section is to sketch the proof presented in Ref. [14]. The BCF recursive relations for pure gluon

amplitudes read

An(1+, 2, . . . , n−) =
n−2∑

k=2

Ak+1

(
1̂, 2, . . . , k,−P̂−h

1,k

) 1

P 2
1,k

An−k+1

(
P̂ h

1,k, k + 1, . . . , n̂
)

, (2.5.1)

where a sum over helicities h of the intermediate gluon is implicit, and

P1,k = p1 + p2 + . . . + pk, (2.5.2)

P̂1,k = P1,k +
P 2

1,k

〈n|P1,k|1]
λnλ̃1, (2.5.3)

p̂1 = p1 +
P 2

1,k

〈n|P1,k|1]
λnλ̃1, (2.5.4)

p̂n = pn −
P 2

1,k

〈n|P1,k|1]
λnλ̃1. (2.5.5)

= Σk

...

2

1̂ Ak+1

k

k + 1

n − 1

...n̂ An−k+1

1 2

n − 1n

...An

Figure 2.1: Diagrammatic representation of the BCF recursive relations.

In the form given above these recursive relations seem to be quite restrictive, because they seem

to apply only when the gluons 1 and n have opposite helicities. However this situation is not as

restrictive as it seems at first glance. It is known from the SUSY relations (1.5.21-1.5.23) given in

• Main idea: QCD amplitudes can be build recursively from 
smaller, on-shell amplitudes.

[hep-th/0412308, hep-th/0501052]



BCFW recursion

2.5. BCF recursive relations 23

2.5 BCF recursive relations

One of the main results arising from the twistor approach to QCD are the so called BCF recursive

relations, first proposed in Ref. [13], and proven analytically by Witten in Ref. [14]. The aim of

this section is to sketch the proof presented in Ref. [14]. The BCF recursive relations for pure gluon

amplitudes read

An(1+, 2, . . . , n−) =
n−2∑

k=2

Ak+1

(
1̂, 2, . . . , k,−P̂−h

1,k

) 1

P 2
1,k

An−k+1

(
P̂ h

1,k, k + 1, . . . , n̂
)

, (2.5.1)

where a sum over helicities h of the intermediate gluon is implicit, and

P1,k = p1 + p2 + . . . + pk, (2.5.2)

P̂1,k = P1,k +
P 2

1,k

〈n|P1,k|1]
λnλ̃1, (2.5.3)

p̂1 = p1 +
P 2

1,k

〈n|P1,k|1]
λnλ̃1, (2.5.4)

p̂n = pn −
P 2

1,k

〈n|P1,k|1]
λnλ̃1. (2.5.5)

= Σk

...

2

1̂ Ak+1

k

k + 1

n − 1

...n̂ An−k+1

1 2

n − 1n

...An

Figure 2.1: Diagrammatic representation of the BCF recursive relations.

In the form given above these recursive relations seem to be quite restrictive, because they seem

to apply only when the gluons 1 and n have opposite helicities. However this situation is not as

restrictive as it seems at first glance. It is known from the SUSY relations (1.5.21-1.5.23) given in

2.5. BCF recursive relations 23

2.5 BCF recursive relations

One of the main results arising from the twistor approach to QCD are the so called BCF recursive

relations, first proposed in Ref. [13], and proven analytically by Witten in Ref. [14]. The aim of

this section is to sketch the proof presented in Ref. [14]. The BCF recursive relations for pure gluon

amplitudes read

An(1+, 2, . . . , n−) =
n−2∑

k=2

Ak+1

(
1̂, 2, . . . , k,−P̂−h

1,k

) 1

P 2
1,k

An−k+1

(
P̂ h

1,k, k + 1, . . . , n̂
)

, (2.5.1)

where a sum over helicities h of the intermediate gluon is implicit, and

P1,k = p1 + p2 + . . . + pk, (2.5.2)

P̂1,k = P1,k +
P 2

1,k

〈n|P1,k|1]
λnλ̃1, (2.5.3)

p̂1 = p1 +
P 2

1,k

〈n|P1,k|1]
λnλ̃1, (2.5.4)

p̂n = pn −
P 2

1,k

〈n|P1,k|1]
λnλ̃1. (2.5.5)

= Σk

...

2

1̂ Ak+1

k

k + 1

n − 1

...n̂ An−k+1

1 2

n − 1n

...An

Figure 2.1: Diagrammatic representation of the BCF recursive relations.

In the form given above these recursive relations seem to be quite restrictive, because they seem

to apply only when the gluons 1 and n have opposite helicities. However this situation is not as

restrictive as it seems at first glance. It is known from the SUSY relations (1.5.21-1.5.23) given in



BCFW recursion
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BCFW recursion
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momentum



BCFW recursion

• Can be generalized to quarks.

• Does not only hold at the level of the color-ordered 
amplitudes, but can be generalized to the full color-dressed 
QCD amplitudes.

• Very compact results for specific helicity configurations 
valid for an arbitrary number of gluons.

• Holds also for QED amplitudes

[Schwinn, Weinzierl, hep-ph/0703021]

[CD, Hoesche, Maltoni, hep-ph/0607057]

[Ozeren, Stirling, hep-th/0509063]



BCFW recursion
• Example of a 7 gluon amplitude from the BCFW recursion

3.3. Seven-Gluon Amplitudes

Now we use our recursion relation to calculate the tree level next-to-MHV amplitude

of seven gluons and compare with results given in [16]. We follow the conventions of that

paper to write the four independent helicity configurations.

For configuration A:(1−, 2−, 3−, 4+, 5+, 6+, 7+), there are only two nonzero contribu-

tions, namely from (2, 3̂|4̂, 5, 6, 7, 1) and (6, 7, 1, 2, 3̂|4̂, 5). The first involves only MHV

amplitudes, so it is just one term. The second involves the next-to-MHV six-gluon ampli-

tude with two terms. We write these three terms in order here:

A(1−, 2−, 3−, 4+, 5+, 6+, 7+) =

〈1|2 + 3|4]3

t[3]2 〈5 6〉〈6 7〉〈7 1〉[2 3][3 4]〈5|4 + 3|2]

−
1

〈3 4〉〈4 5〉〈6|7 + 1|2]

(
〈3|(4 + 5)(6 + 7)|1〉3

t[3]3 t[3]6 〈6 7〉〈7 1〉〈5|4 + 3|2]
+

〈3|2 + 1|7]3

t[3]7 〈6 5〉[7 1][1 2]

)

.

(3.5)

Term by term, this expression is equal to cB + c347|flip + c347 from [16], which is exactly

the compact formula given there. For configuration B:(1−, 2−, 3+, 4−, 5+, 6+, 7+), there

are three nonzero contributions. We write the formula in the following order: the single

term from (3, 4̂|5̂, 6, 7, 1, 2), the single term from (2, 3, 4̂|5̂, 6, 7, 1), and the three terms from

(7, 1, 2, 3, 4̂|5̂, 6).

A(1−, 2−, 3+, 4−, 5+, 6+, 7+) =

〈1 2〉3[3 5]4

t[3]3 [3 4][4 5]〈6 7〉〈7 1〉〈2|3 + 4|5]〈6|4 + 5|3]

+
〈2 4〉4〈1|7 + 6|5]3

t[3]2 t[3]6 〈2 3〉〈3 4〉〈6 7〉〈7 1〉〈2|3 + 4|5]〈6|(7 + 1)(2 + 3)|4〉

+
〈1 2〉3〈4|5 + 6|3]4

t[3]4 t[3]7 〈4 5〉〈5 6〉〈7 1〉〈6|4 + 5|3]〈7|1 + 2|3]〈4|(5 + 6)(7 + 1)|2〉

+
〈4|1 + 2|3]4

t[3]1 [1 2][2 3]〈4 5〉〈5 6〉〈6 7〉〈4|3 + 2|1]〈7|1 + 2|3]

+
〈2 4〉4〈4|5 + 6|7]3

〈2 3〉〈3 4〉〈4 5〉〈5 6〉[7 1]〈4|3 + 2|1]〈4|(5 + 6)(7 + 1)|2〉〈6|(7 + 1)(2 + 3)|4〉
.

(3.6)

Term by term, this expression is equal to c145 + cA + cE + c236 + c136 from [16]. This is

not the exact compact formula given in that paper, but it is possible to derive from the
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CSW formalism
• Any tree-level amplitude can be written as a sum of CSW 

diagrams
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1

• 3 CSW diagrams vs. 510 Feynman diagrams.

[Cachazo, Svrcek, Witten, hep-th/0403042]



CSW formalism
• Any tree-level amplitude can be written as a sum of CSW 

diagrams

−

−

+ +
+

+

− −

+
− −

+
+

+
−

− −

+

−+ + +− −

+

−

−

+ +
+

+

− −

+
− −

+
+

+
−

− −

+

−+ + +− −

+

−

−

+ +
+

+

− −

+
− −

+
+

+
−

− −

+

−+ + +− −

+

−

−

+ +
+

+

− −

+
− −

+
+

+
−

− −

+

−+ + +− −

+

−

−

+ +
+

+

− −

+
− −

+
+

+
−

− −

+

−+ + +− −

+

A6(1−, 2−, 3−, 4+, 5+, 6+) = (1)

Split−h(1, . . . , n) = (2)

1

• The vertices are on-shell QCD amplitudes (for a specific 
helicity assignment) of the form

Atree
5 (1−, 2−, 3+, 4+, 5+) =

〈12〉4

〈12〉〈23〉〈34〉〈45〉〈51〉

〈1P 〉4

〈12〉〈23〉〈34〉〈4P 〉〈P1〉

1

[Cachazo, Svrcek, Witten, hep-th/0403042]



CSW formalism
• Any tree-level amplitude can be written as a sum of CSW 

diagrams
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• The vertices are on-shell QCD amplitudes (for a specific 
helicity assignment) of the form

Atree
5 (1−, 2−, 3+, 4+, 5+) =

〈12〉4

〈12〉〈23〉〈34〉〈45〉〈51〉

〈1P 〉4

〈12〉〈23〉〈34〉〈4P 〉〈P1〉
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Complex 
on-shell 

momentum

[Cachazo, Svrcek, Witten, hep-th/0403042]



• Very easy diagrammatic technique, giving very compact 
results.

• Suitable not only for the calculation of amplitudes, but also 
for the calculation of

CSW formalism

- splitting functions
- antenna functions

[Birthwright, Glover, Khoze, Marquard, 
hep-ph/0503063]

[CD, Maltoni]

[Georgiou, Khoze, hep-th/0404072; 
Badger, Glover, Khoze, hep-th/0412275]

• Can be generalized to quarks, and scalars.



• All one-loop QCD amplitudes can be reduced to a sum of 
boxes, triangles and bubbles:

Generalized unitarity

we just need to calculate these 
coefficients!

=  c4 +  c3 +  c2

• If we cut one line (i.e. put on-shell one loop propagator), 
unitarity tells us how the amplitude behaves:

[Bern, Dixon, Dunbar,  Kosower,
 hep-ph/0943226]



• All one-loop QCD amplitudes can be reduced to a sum of 
boxes, triangles and bubbles:

Generalized unitarity

we just need to calculate these 
coefficients!

=  c4 +  c3 +  c2

• If we cut a second line... the result is zero!

=  0 !
But this assumes 
the momenta to 

be real...



• In complex momenta, more than one unitarity cut is 
allowed:

Generalized unitarity

≠ 0! 



• In complex momenta, more than one unitarity cut is 
allowed:

Generalized unitarity

= c4

Atree
5 (1−, 2−, 3+, 4+, 5+) =

〈12〉4

〈12〉〈23〉〈34〉〈45〉〈51〉

〈1P 〉4

〈12〉〈23〉〈34〉〈4P 〉〈P1〉

Atree

1
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〈12〉4

〈12〉〈23〉〈34〉〈45〉〈51〉

〈1P 〉4

〈12〉〈23〉〈34〉〈4P 〉〈P1〉

Atree

1

Atree
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〈12〉〈23〉〈34〉〈4P 〉〈P1〉

Atree

1

Atree
5 (1−, 2−, 3+, 4+, 5+) =

〈12〉4

〈12〉〈23〉〈34〉〈45〉〈51〉

〈1P 〉4

〈12〉〈23〉〈34〉〈4P 〉〈P1〉

Atree

1

• The tree amplitudes can be calculate using other 
techniques (CSW, BCFW, ...).

• This fixes completely the coefficient c4.

[Britto, Cachazo, Feng, hep-th/0412103; 
Anastasiou, Britto, Feng, Kunzt, Mastrolia, hep-ph/0607011;

Ossola, Papadopulos, Pittau, hep-ph/0802.1876]



• Feynman diagrams are not the most efficient technique to 
calculate gauge theory amplitudes.

Conclusion

• Color-ordered amplitudes can be very easily and efficiently 
calculated using the twistor techniques, both at tree-level 
and at one-loop level.

• The results obtained from these techniques have in general  
very simple and compact analytic expressions.
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