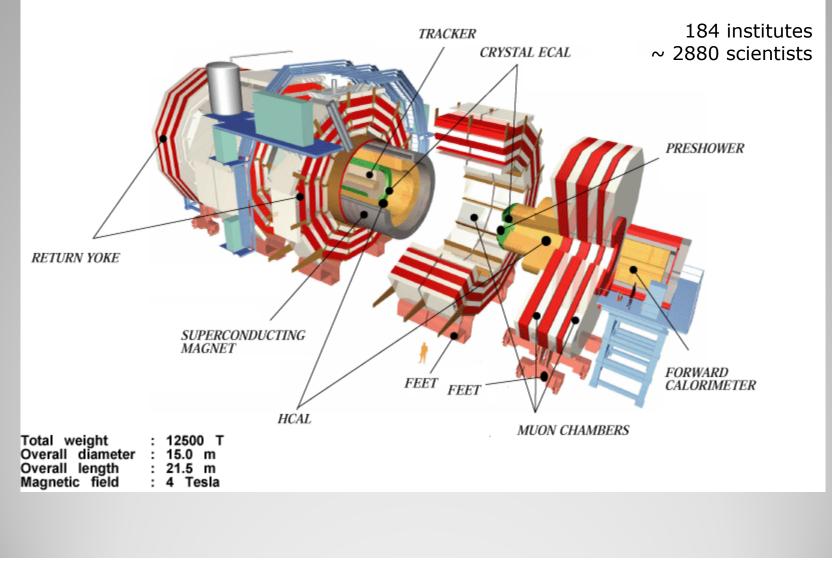
Early Physics with the CMS detector at LHC

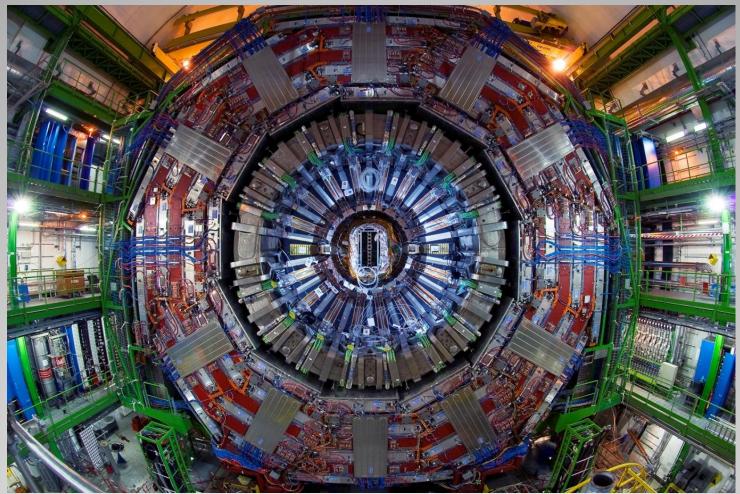
HLPW2008 6. – 8. March 2008 Spa, Belgium

Andre Holzner CERN/CMS

Outline


- Status and schedule
 - CMS
 - LHC
- Early data analyses:
 - The roadmap to discovering new physics
 - Calibration and Alignment
 - Underlying event
 - Physics with dijet events
 - W/Z \rightarrow leptons
 - Top pair production

Physics studies results taken from CMS recent physics results page:


https://twiki.cern.ch/twiki/bin/view/CMS/PhysicsResults

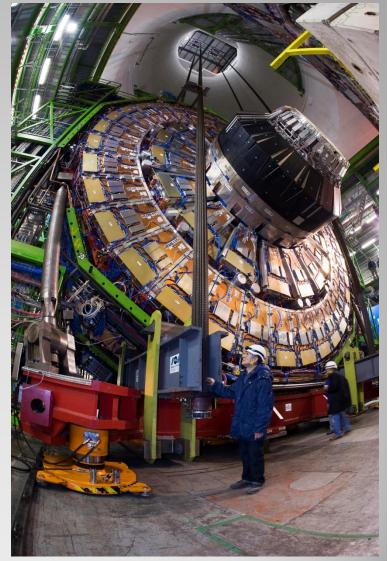
and from the <u>CMS Physics Technical Design Report</u> <u>J. Phys. G: Nucl. Part. Phys. **34** 995-1579</u>

The CMS detector

CMS status and schedule

Tracker inserted in January

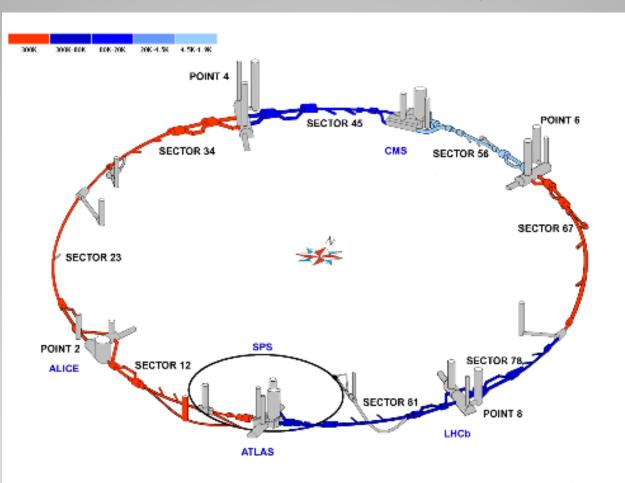
HLPW2008, March 6-8


CMS status and schedule

- Descent of the last endcap disc in January
- All barrel wheels and endcap discs now underground

Next steps:

Date	Event
End of March	Cosmic data taking without magnetic field
End of April	Beam pipe closed and baked out Pixel detector installed
End of May	CMS detector closed
June	Cosmic run with full magnetic field* Ready for beam
	Ready for Dealth


*a slice of the detector has been used to record cosmic data on the surface at nominal magnetic field in 2006

http://cern.ch/lhc

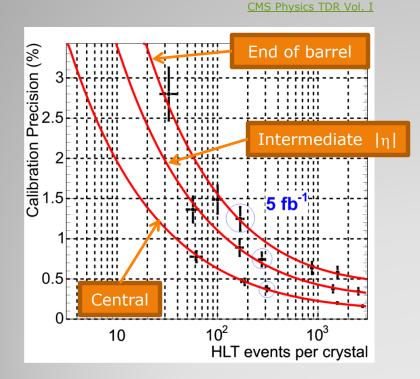
2008-03-02

One out of eight sectors cooled down to < 2 K

HLPW2008, March 6-8

LHC schedule

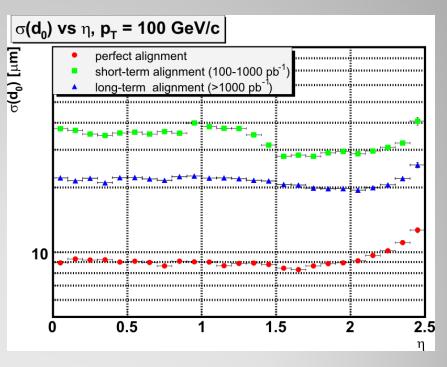
http://cern.ch/lhccwg/overview index.htm


Stage	Year	Program	Luminosity (target/limit) [cm ⁻² s ⁻¹]	Integ. Lumi (week/month) for target [pb ⁻¹]
A	2008	Pilot physics run: physics aim 43 x 43 bunches maximum 156 x 156 bunches.	6.12·10 ³⁰ / 1.12·10 ³²	3.7 / 16.1
В	2009	Intermediate physics run: physics aim 75 ns bunch spacing possible initial physics aim 96 x 96 bunches (bunch intensity 1 x 10^{10}) maximum aim 936 x 936 bunches (maximum 9 x 10^{10})	1.28·10 ³² / 1.24·10 ³³	77.4 / 337
С	2009	25 ns run I: intensity per bunch 5 x 10^{10} protons (initial 1 x 10^{10}); physics aim 2808 x 2808 bunches	1.13·10 ³³ / 1.91·10 ³³	683 / 2972
D	After 2009	25 ns run II: push towards nominal performance	3.65·10 ³³ / 1.01·10 ³⁴	2208 / 9599

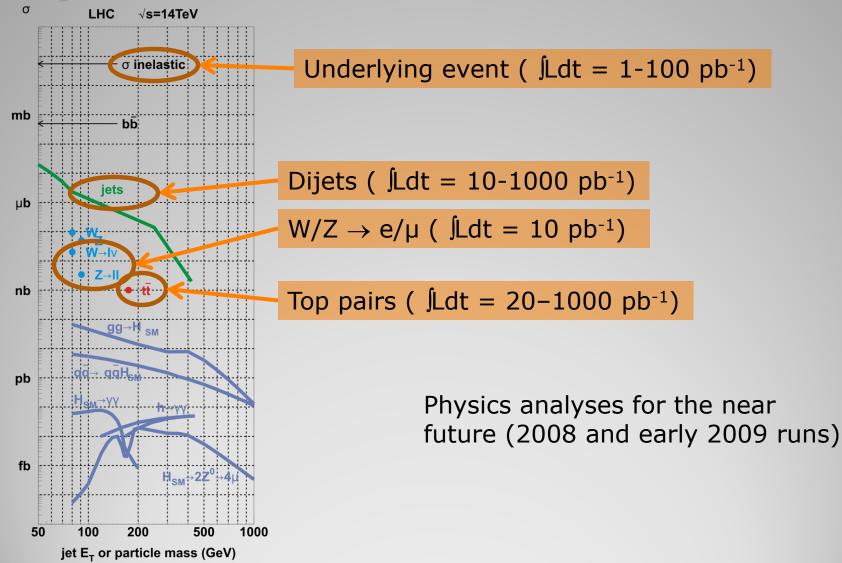
Roadmap to new physics

- Reminder:
 - The roadmap to discovering new physics is the following:
 - Understand data acquisition, trigger and detector behaviour
 - 2. Validate event reconstruction
 - 3. Calibrate calorimeters and align tracking chambers
 - 4. Measure Standard Model cross sections and distributions
 - 5. Look for peaks on top of known processes

Calibration and Alignment

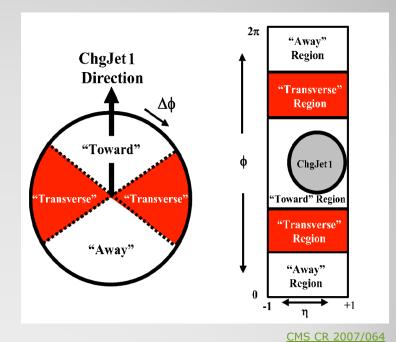

Calorimeters need to be calibrated

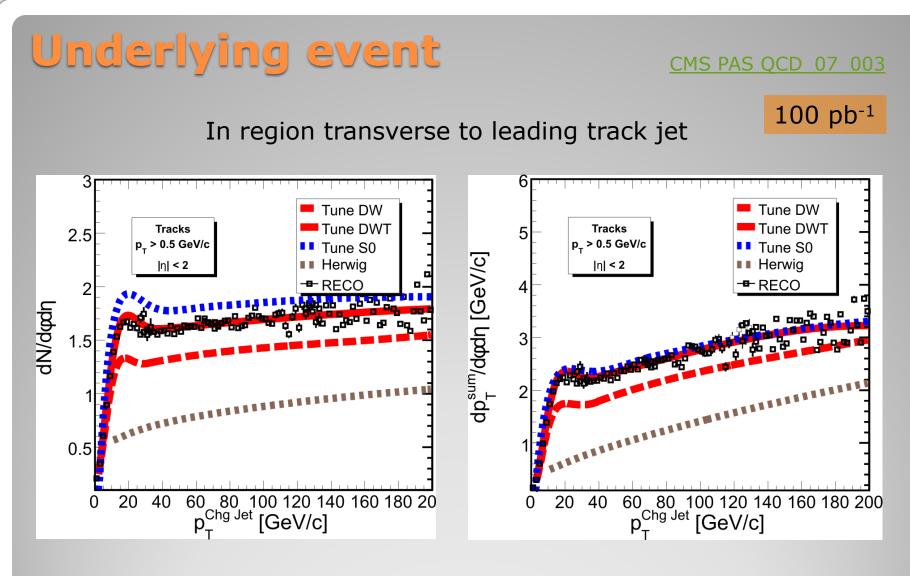
ECAL calibration uncertainty For different detector regions


Tracking chambers need to be aligned

CMS Note 2006/029

Transverse impact parameter resolution for different misalignment scenarios


Physics Processes at LHC

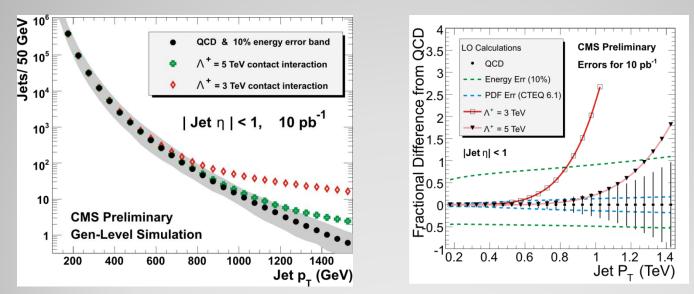

Underlying event

CMS PAS QCD 07 003

- Several models for describing the non-hard-scattering part of a proton-proton collision (underlying event) exist
- Models tuned with measurements at the TEVATRON but still give significantly different predictions for LHC
- Experimentally important for
 - calculating jet energies
 - particle isolation
 - Multiple hard interactions
- Strategy: Look for charged particle activity in the plane transverse to the leading charged particle jet and compare different models

HLPW2008, March 6-8

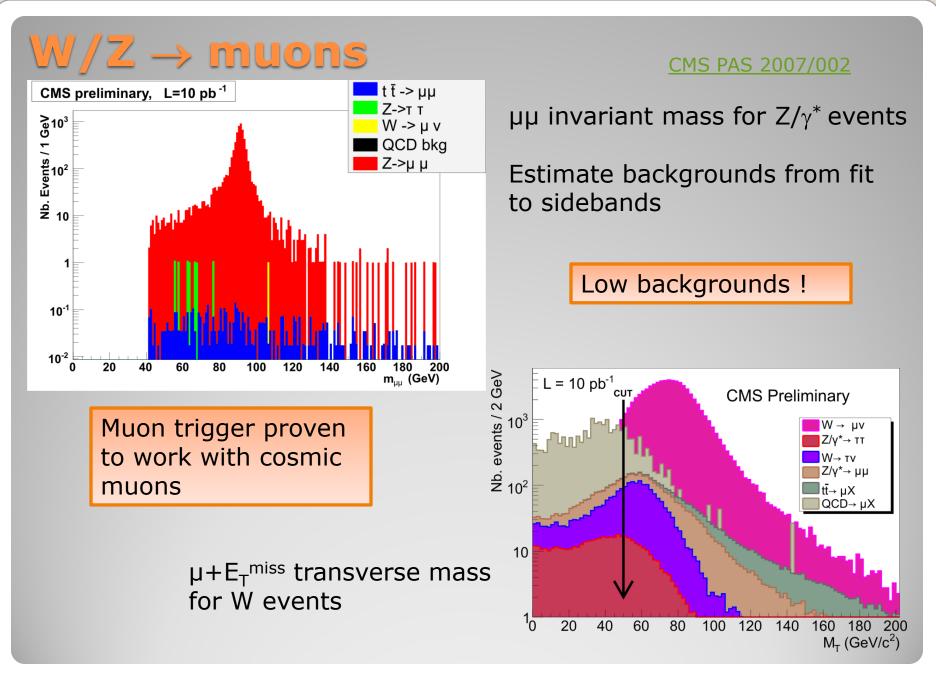
charged particle multiplicity


charged particle momentum sum

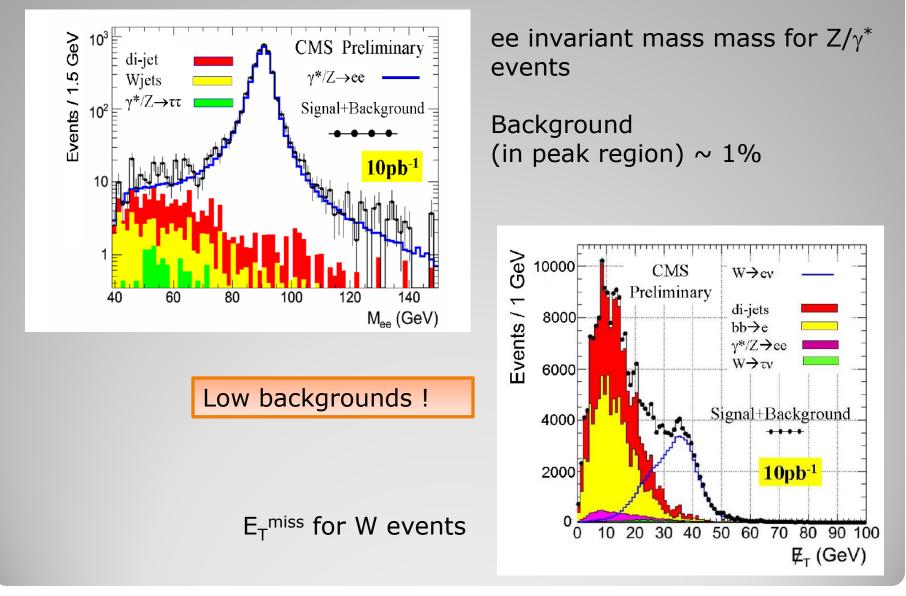
underlying event models differ significantly !

HLPW2008, March 6-8

Physics with dijet events CMS PAS SBM 07 001


- Reconstruct jets with an iterative cone algorithm (cone size R = 0.5)
- Take the two jets with largest transverse momentum
- Require
 - central jets
 - missing E_T / (scalar E_T sum) < 0.3

Sensitivity to contact interactions: Λ^+ = 3 TeV observable with 10 pb⁻¹ (Current TEVATRON limit: 2.7 TeV)


$W/Z \rightarrow electrons/muons$

- High cross section
- Half of the Feynman diagram is electroweak
 - well understood theoretically
 - fully differential calculations available at NNLO QCD (Melnikov, Petriello Phys.Rev.D74:114017,2006)
 - Theoretical scale uncertainty less than 1%
 - Measured to high precision at previous colliders
- Can be used to calibrate electromagnetic calorimeter and muon detectors in situ
- Can be used to check lepton reconstruction efficiencies with data
- Can be used to cross check PDFs
- Background to a number of searches

$W/Z \rightarrow electrons$

CMS PAS EWK-07-001

$W/Z \rightarrow electrons$

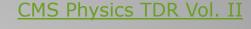
- Backgrounds:
 - W→ev
 - QCD background: determine from data
 - Z/γ^* decays to electrons (3%)
 - W/Z decays to taus (2%)
 - Z→e+e-
 - Light and b di-jet production
 - About 1% total
- Expected uncertainties for 10 pb⁻¹:

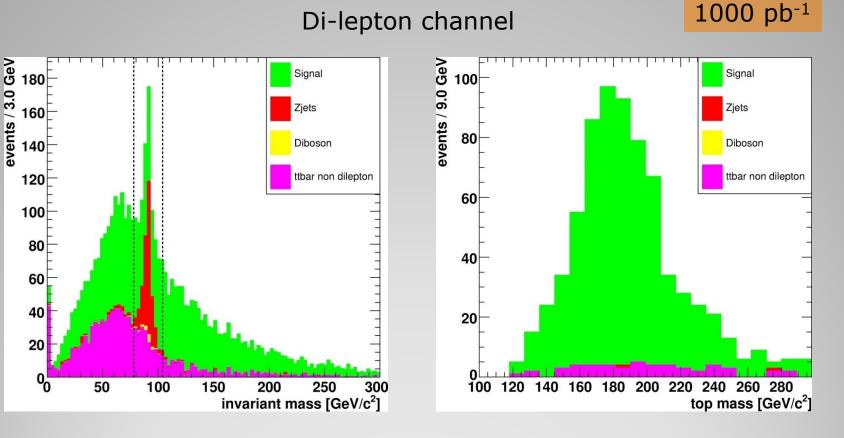
Source/Nature	W→ev
Systematic (BG subtraction, efficiency, acceptance, higher order calculations, renormalization scale etc.)	few %
Luminosity	10%
Statistical	~ 1%

Luminosity is the dominant uncertainty → use this measurement to determine the parton luminosity

- Large number of tops will be produced at LHC
 - $\sigma_{NLO} \approx 830 \text{ pb}$
 - Cross section more than 100 times larger than at the Tevatron
- All kinds of reconstruction aspects need to be understood/can be tested:
 - Lepton reconstruction and identification
 - Jet reconstruction
 - Lepton energy/jet energy/missing E_T scales
 - Secondary vertices, b-tagging

• Experimental signatures:


Decay Mode	Branching ratio	Experimental signature
hadronic	46%	j j b b
Semi- leptonic	44% (29% e/µ)	j F F b
dilepton	10% (5% e/µ)	b ∉ t b


- Start with di-lepton and semi-leptonic (lepton = e/μ) channels
- With **20pb**⁻¹:
 - About 800 di-lepton and 4700 semi-leptonic (e/µ) events produced
 - Observe top pair events
 - Look for a mass peak (semi-leptonic channel)
- With 200pb⁻¹:
 - Estimation of background rates from data
 - Measurement of cross section
 - Measurement of m_{top}
 - Measurement of first differential distributions (m_{top}, m_{top}^T, p_T,...)
 - Observation of events involving tau decays
 - Checks of inclusive jet energy scale, b-tag efficiency, missing E_T reconstruction, m_{top} - m_{antitop}

- Di-lepton channel:
 - Require
 - Lepton trigger
 - At least two jets
 - Two oppositely charged leptons with $p_T > 20$ GeV
 - Lepton isolation (tracks and calorimeter hits)
 - $E_T^{miss} > 40 \text{ GeV}$
 - Select two b jets
 - Discrimination based on jet p_T, jet mass (from tracks), secondary vertex (distance and relative energy) etc.
 - Apply kinematic fit imposing W mass
 - Efficiency = 1.2%, S/B = 12:1

CMS Physics TDR Vol. II

1000 pb⁻¹

Reconstructed top mass after Kinematic fit (final selection)

Di-lepton invariant mass

- Semi-leptonic channel (muons only):
 - Require
 - Single muon trigger
 - At least four jets
 - A muon with $p_T > 20$ GeV
 - Lepton isolation (tracks and calorimeter hits)
 - $E_T^{miss} > 30 \text{ GeV}$
 - Select two b jets
 - Discrimination based on jet p_T, jet mass (from tracks), secondary vertex (distance and relative energy) etc.
 - Apply kinematic fit imposing W mass
 - Efficiency = 6.28±0.04%, S/B = 26.7:1
 - Cross section measurement uncertainties (1 fb⁻¹): ± 1.2%(stat) ±9.2%(syst) ± 10% (luminosity)

CMS Physics TDR Vol. II

1000 pb⁻¹

Conclusion and outlook

Several interesting physics topics to be looked at with the very first LHC collisions were presented

Looking forward to recording proton-proton collisions soon !

Backup Slides

• Systematic uncertainties (di-lepton channel, 10 fb⁻¹)

Effect	Effect on cross section measurement
Jet Energy Scale	3.6%
b-tag efficiency	3.8%
Lepton reconstruction	1.6%
E _T ^{miss}	1.1%
ISR and FSR	2.5%
Pile-Up	3.6%
Underlying Event	4.1%
Heavy quark fragmentation	5.1%
PDF uncertainties	5.2%
Statistical uncertainty	0.9%
Integrated luminosity	3%

 Accepted cross sections (di-lepton channel, LO cross section in pb⁻¹):

Stage	Signal	τ	WW	WZ	ZZ	Z + jets	Other top pair
Before selection	24.3	30.4	7.74	0.89	0.11	3912	438
Level-1 + HLT	19.4	15.1	4.4	0.37	0.07	657	92
2 jets E _⊤ > 20 GeV	11.5	9.8	0.6	0.012	0.006	23.9	73.1
E _T ^{miss} > 40 GeV	9.6	8.1	0.5	0.01	0.003	5.8	53.6
Two opp. charged leptons	3.2	0.42	0.04	0.001	0.001	1.17	0.12
b-tag of two highest E _T jets	1.12	0.15	0.002	~10 ⁻⁴	~10 ⁻⁵	<0.01	0.05

Systematic uncertainties (semi-leptonic channel, 10 fb⁻¹)

Effect	Effect on cross section measurement
Simulation samples (ϵ_{sim})	0.6%
Simulation samples (F _{sim})	0.2%
Jet Energy Scale (light quarks) (2%)	1.6%
Jet Energy Scale (heavy quarks) (2%)	1.6%
b-tagging (5%)	7.0%
Background level	0.9%
Radiation (Λ_{QCD} , Q^2_0)	2.6%
Pile-Up (30% On-Off)	3.2%
Underlying Event	0.8%
Fragmentation (Lund b, σ_q)	1.0%
Parton Density Functions	3.4%
Statistical uncertainty	0.4%
Integrated luminosity	3%
Total Systematic Uncertainty	9.7%
Total Uncertainty	9.7%

 Efficiencies (semi-leptonic channel, LO cross sections for S/B and accepted cross section):

Stage	Semi- lept. top pair	Other top pair	W + 4jets	Wbb + 2jets	Wbb + 3jets	S/B
Level-1 + HLT	62.2%	5.30%	24.1%	8.35%	8.29%	7.8
four jets E _⊤ > 30 GeV	25.4%	1.01%	4.1%	1.48%	3.37%	9.9
p _⊤ ^{lepton} > 20 GeV	24.8%	0.97%	3.9%	1.41%	3.14%	10.3
b-tag criteria	6.5%	0.24%	0.064%	0.52%	0.79%	25.4
Kinematic fit	6.3%	0.23%	0.059%	0.48%	0.72%	26.7
Selected cross section (pb)	5.21	1.10	0.10	0.08	0.05	
Scaled to L = 1 fb ⁻¹ (events)	5211	1084	104	82	50	

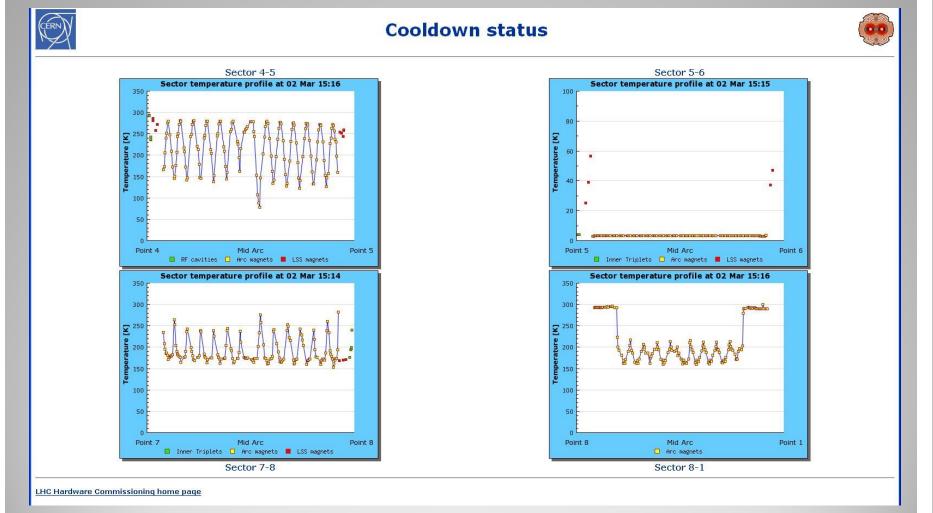
LHC schedule

http://cern.ch/foraz/schedule.pdf

12 78 81 23 67 34 56 Mar. Mar. Apr. Apr. May May Jun. Jun. Jul. Jul. 2007 2007 Aug Aug. Sep. Sep. Oct. Oct. Nov. Nov. Dec. Dec. Jan. Jan. Feb. Feb. Mar. Mar. Apr. Apr. Machine Checkout May May Solution Jun. Beam Commissioning to 7 TeV Jun. 2008 Jul. Jul. General schedule Baseline rev. 4.0 Interconnection of the continuous cryostat Flushing Cool-down Leak tests of the last sub-sectors "" Global pressure test & Consolidation Inner Triplets repairs & interconnections Warm up Cool-down Powering Tests Global pressure test & Consolidation Powering Tests

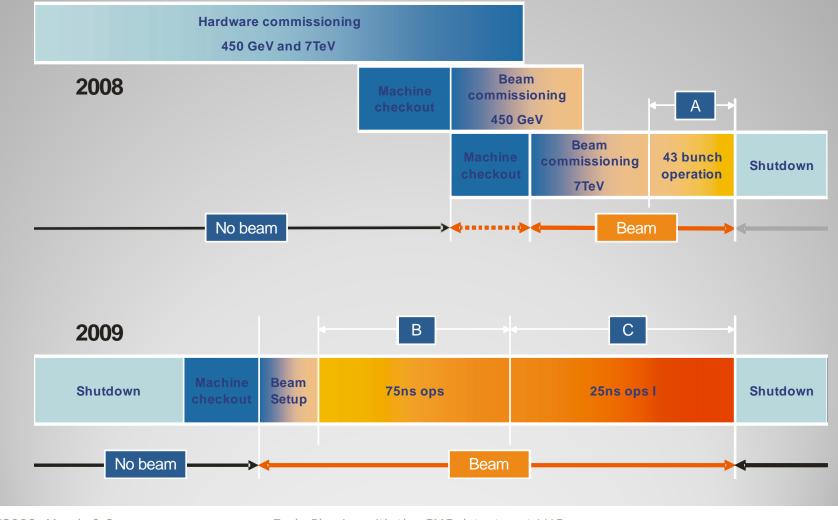
Upated General schedule – week 41/2008 / K.Foraz

Expect beam commissioning in July


HLPW2008, March 6-8

Early Physics with the CMS detector at LHC

<u>http://cern.ch/lhc</u>


2008-03-02

LHC status

LHC schedule

R.Bailey, Physics at the Terascale DESY, December 2007

HLPW2008, March 6-8

LHC schedule

Stage A	Pilot physics run: physics aim 43 x 43 bunches; maximum 156 x 156 bunches.
<u>Stage B</u>	Intermediate physics run: physics aim 75 ns bunch spacing; possible initial physics aim 96 x 96 bunches (bunch intensity 1×10^{10}), maximum aim 936 x 936 bunches (maximum 9 x 10^{10}).
Stage C	25 ns run I: intensity per bunch 5 x 10^{10} protons (initial 1 x 10^{10}); physics aim 2808 x 2808 bunches
Stage D	25 ns run II: push towards nominal performance

Machine parameters		450GeV		Stag	e A	Stag	le B	Stag	e C		Stage	e D
		Target		Target	Limit	Target	Limit	Target	Limit		Target	Limit
spacing	ns	2021		2021	566	75	75	25	25		25	25
bunch length	m	0.1124		0.0755	0.0755	0.0755	0.0755	0.0755	0.0755		0.0755	0.0755
crossing angle	urad	0		0	0	250	250	285	285		285	285
bunch intensity		4.00E+10		4.00E+10	9.00E+10	4.00E+10	9.00E+10	5.00E+10	5.00E+10		9.00E+10	1.15E+11
bunches		43		43	156	936	936	2808	2808		2808	2808
energy	eV	4.50E+11		7.00E+12	7.00E+12	7.00E+12	7.00E+12	7.00E+12	7.00E+12		7.00E+12	7.00E+12
F		1.00		1.00	1.00	0.96	0.92	0.90	0.84	Installation of	0.90	0.84
normalised emittance	cm	3.75E-04	Commission	3.75E-04	3.75E-04	3.75E-04	3.75E-04	3.75E-04	3.75E-04	phase II	3.75E-04	3.75E-04
beta*	cm	1100	hardware for high energy	200	200	200	100	100	55	collimators and full beam	100	55
			operation									
luminosity	/cm2s	7.16E+28		6.12E+30	1.12E+32	1.28E+32	1.24E+33	1.13E+33	1.91E+33	diluters	3.65E+33	1.01E+34
total inel cross section	cm2	6.00E-26		6.00E-26	6.00E-26	6.00E-26	6.00E-26	6.00E-26	6.00E-26		6.00E-26	6.00E-26
event rate per cross		0.01		0.76	3.85	0.73	7.09	2.14	3.63		6.94	19.18
protons per beam		1.72E+12		1.72E+12	1.40E+13	3.74E+13	8.42E+13	1.40E+14	1.40E+14		2.53E+14	3.23E+14
current per beam	mA	3.09E+00		3.09E+00	2.53E+01	6.74E+01	1.52E+02	2.53E+02	2.53E+02		4.55E+02	5.81E+02
energy per beam	Joules	1.24E+05		1.93E+06	1.57E+07	4.19E+07	9.43E+07	1.57E+08	1.57E+08		2.83E+08	3.62E+08
beam size	um	293.3		31.7	31.7	31.7	22.4	22.4	16.6		22.4	16.6