

Possible solution of the J/ψ **Production Puzzle**

Joint Meeting Heidelberg-Liège-Paris-Wroclaw 2008 Spa, Belgium, March 6-8, 2008

Jean-Philippe LANSBERG

Institut für Theoretische Physik, Heidelberg U.

based on works with J.R. Cudell, H.Haberzettl, Yu.L Kalinovsky

Before you leave Spa !

- → The proceedings will be published in AIP
- → We need 90% of the contributions
 - (3 missings at most !)
- → Deadline for you to send us your contribution: MAY 15 (not MAY 31 as on the poster)
- **Everyone has 10 pages**
- → Instruction will be posted next week on the net
- → It'll be "camera-ready" submission,

so please observe the sample file

→ Please send us your pictures taken here

we may include them

especially if I'm on them

Naive pQCD approach: Colour Singlet Model (CSM)

\clubsuit Perturbative creation of two quarks Q and \bar{Q} BUT

- ➡ on-shell (x)
- → in a colour singlet state (we want a physical state thereafter)
- → with a vanishing relative momentum
- \rightarrow in a ${}^{3}S_{1}$ state (for J/ψ , ψ' and Υ)

Naive pQCD approach: Colour Singlet Model (CSM)

- \clubsuit Perturbative creation of two quarks Q and \bar{Q} BUT
 - → on-shell (×)
 - → in a colour singlet state (we want a physical state thereafter)
 - → with a vanishing relative momentum
 - \rightarrow in a ${}^{3}S_{1}$ state (for J/ψ , ψ' and Υ)
- Non-perturbative binding of quarks

Schrödinger wave function

Naive pQCD approach: Colour Singlet Model (CSM)

\clubsuit Perturbative creation of two quarks Q and \bar{Q} BUT

- → on-shell (×)
- → in a colour singlet state (we want a physical state thereafter)
- → with a vanishing relative momentum
- \rightarrow in a 3S_1 state (for J/ψ , ψ' and Υ)

Non-perturbative binding of quarks

J-Ph. LANSBERG, Heidelberg U.

HLPW08 - 08-03-2008

Specifically large QCD-corrections ? Why so ?

hint: P_T scaling of fragmentation channels

see P. Artoisenet's talk

⇒ Specifically large QCD-corrections ? Why so ?
hint: P_T scaling of fragmentation channels
see P. Artoisenet's talk

→ Hypotheses/constraints of the model too strong ?

→ Hypotheses/constraints of the model too strong ?

 \rightarrow Should the pair be produced in a colour singlet ? Can't it evolve ?

Colour Octet Mechanism

← Specifically large QCD-corrections ? Why so ? hint: P_T scaling of fragmentation channels see P. Artoisenet's talk

→ Hypotheses/constraints of the model too strong ?

→ Should the pair be produced in a colour singlet ? Can't it evolve ? Colour Octet Mechanism

→ Can't the quarks be produced off-shell ? with relative momentum \neq 0? s-channel cut contribution **Fragmentation via Colour Octets**

Many solutions were proposed to solve this problem:

For a recent review, see J.P.L. IJMPA 21 3857-3915 (2006)

the most used solution: the Color Octet Mechanism (NRQCD): Physical states can be produced by coloured pairs

 $\Rightarrow J/\psi$, ψ' and Υ can be produced by a single –coloured– gluon

 \Rightarrow Gluon fragmentation appears at Leading Order in α_s

Fragmentation via Colour Octets

Many solutions were proposed to solve this problem:

For a recent review, see J.P.L. IJMPA 21 3857-3915 (2006)

the most used solution: the Color Octet Mechanism (NRQCD): Physical states can be produced by coloured pairs

- $\Rightarrow J/\psi$, ψ' and Υ can be produced by a single –coloured– gluon
- \Rightarrow Gluon fragmentation appears at Leading Order in α_s
- \Rightarrow When $P_{gluon} \gg$, the gluon is nearly on-shell and transversally polarised
- \Rightarrow NRQCD spin symmetry: Q has the same polarisation as the gluon
- \Rightarrow Experimentally, one can study α such that:

 $\alpha = +1 \Leftrightarrow \text{Transverse} \ \alpha = 0 \Leftrightarrow \text{Unpolarised} \ \alpha = -1 \Leftrightarrow \text{Longitudinal}$

a man o

Fragmentation via Colour Octets

Many solutions were proposed to solve this problem:

For a recent review, see J.P.L. IJMPA 21 3857-3915 (2006)

the most used solution: the Color Octet Mechanism (NRQCD): Physical states can be produced by coloured pairs

- $\Rightarrow J/\psi$, ψ' and Υ can be produced by a single –coloured– gluon
- \Rightarrow Gluon fragmentation appears at Leading Order in α_S
- \Rightarrow When $P_{gluon} \gg$, the gluon is nearly on-shell and transversally polarised
- \Rightarrow NRQCD spin symmetry: Q has the same polarisation as the gluon
- \Rightarrow Experimentally, one can study α such that:

 $\alpha = +1 \Leftrightarrow \text{Transverse} \ \alpha = 0 \Leftrightarrow \text{Unpolarised} \ \alpha = -1 \Leftrightarrow \text{Longitudinal}$

Somo S

QCD-corrections

 \rightarrow Much closer, but still not enough...

s-channel cut contribution

J.P.L., J.R. Cudell, Yu.L. Kalinovsky, PLB 633, 301,2006

So far, people considered only such configurations idem for NRQCD

s-channel cut contribution
J.P.L., J.R. Cudell, Yu.L. Kalinovsky,PLB 633, 301,2006
Q Q

 \Rightarrow What about those ? (*i.e.* the usual contributions to $Im(\mathcal{M})$)

s-channel CUT

 \rightarrow Quark relative momentum not fixed to zero; 2 more integrals

→ $Q - \bar{Q} - Q$ vertex has one leg off-shell

Introduction of a 4-point function to preserve gauge-invariance

Problem with gauge invariance

- \Rightarrow To change gauge amounts to the shift: $\varepsilon^{\nu}(k) \rightarrow \varepsilon^{\nu}(k) + \lambda k^{\nu}$
- \Rightarrow Gauge invariance states that this cannot affect the final result: OK if $A_{\nu}k^{\nu} = 0$
- \Rightarrow Let us consider $Q\bar{Q} \rightarrow \gamma\gamma$:

Gauge invariance: $A_{\mu\nu}k_4^{\nu} + B_{\mu\nu}k_4^{\nu} = 0$

Problem with gauge invariance

- \Rightarrow To change gauge amounts to the shift: $\varepsilon^{\nu}(k) \rightarrow \varepsilon^{\nu}(k) + \lambda k^{\nu}$
- \Rightarrow Gauge invariance states that this cannot affect the final result: OK if $A_{\nu}k^{\nu} = 0$
- \Rightarrow Let us consider $Q\bar{Q} \rightarrow \gamma\gamma$:

Gauge invariance: $A_{\mu\nu}k_4^{\nu} + B_{\mu\nu}k_4^{\nu} = 0$

 $\Rightarrow \text{ and now } Q\bar{Q} \rightarrow Q\gamma:$ $p = 2k_1 - k_3$ $k_1 - k_3$ $k_2 - k_4$ $k_3 - k_4$ $k_4 - k_5$ $k_4 - k_5$ $k_5 -$

Gauge invariance: $\Gamma_1 A_{\mu\nu} k_4^{\nu} + \Gamma_2 B_{\mu\nu} k_4^{\nu} = (\Gamma_1 - \Gamma_2) A_{\mu\nu} k_4^{\nu} \neq 0$

4-point function I

 \rightarrow Accounts for such contributions

4-point function I

 \rightarrow Accounts for such contributions

→ Cannot be uniquely derived from the $Q - \bar{Q} - Q$ vertex $\Gamma^{(3)}$

 \rightarrow Yet, constrained by gauge-invariance

$$(\Gamma^{(4)}(c_1, c_2, q))^{\mu\nu} = \left(\frac{(2c_2 + q)^{\nu}}{(c_2 + q)^2 - m_Q^2}(\Gamma_1^{(3)} - F) + \frac{(2c_1' - q)^{\nu}}{(c_1 + q)^2 - m_Q^2}(\Gamma_2^{(3)} - F)\right)\gamma^{\mu}$$

with $F(c_1, c_2) = \Gamma_0 - h(c_1, c_2)\frac{(\Gamma_0 - \Gamma_1(c_1, c_2))(\Gamma_0 - \Gamma_2(c_1, c_2))}{\Gamma_0}$

\boldsymbol{h} being an **arbitrary** crossing symmetric function

H. Haberzettl, PRC56:2041,1997 H. Haberzettl *et al.*, PRC58:40,1998

→ Limiting behaviour:

\times low momentum: minimal substitution:

Let's represent $\Gamma^{(3)}$ by an effective Lagrangian, the formal replacement

 $\partial^{\mu} \rightarrow \partial^{\mu} + iQA^{\mu}$ (Q: charge; A^{μ} : vector potential)

leads to $F = \Gamma_0$

S.D. Drell, T.D. Lee, PRD5:1738,1972

K. Ohta, PRC40:1335,1989

→ Most natural choice for low momenta (low P_T), but → In a toy model for $F_2^p(x)$ ($p \rightarrow p'X^0$), this leads to a logarithmic scaling-violation → In our case, $\frac{d\sigma}{dP_T}$ has a wrong P_T scaling.

\times large momentum: scaling: h = 1

S.D. Drell, T.D. Lee, PRD5:1738,1972

4-point function III

→ Limiting behaviour:

 \times low momentum: minimal substitution: $F = \Gamma_0$

S.D. Drell, T.D. Lee, PRD5:1738,1972

K. Ohta, PRC40:1335,1989

 \times large momentum: scaling: h = 1

S.D. Drell, T.D. Lee, PRD5:1738,1972

 \rightarrow Let's interpolate:

$$h(c_1.c_2) = 1 - a \frac{\kappa^2}{\kappa^2 - (c_1.c_2 + m_Q^2)}$$

H. Haberzettl, J.P.L, Phys. Rev. Lett.: 100,032006,2008

a and κ will be fixed by the data.

Does the *s*-cut matter ?

H. Haberzettl, J.P.L, Phys.Rev.Lett.:100,032006,2008

With $\kappa = 4.5$ GeV and a = 4, we get for the Tevatron and RHIC:

Does the *s*-cut matter ?

H. Haberzettl, J.P.L, Phys.Rev.Lett.:100,032006,2008

With $\kappa = 4.5$ GeV and a = 4, we get for the Tevatron and RHIC:

J-Ph. LANSBERG, Heidelberg U.

HLPW08 - 08-03-2008

Application to other processes

Inelastic photo-production

Application to other processes

Inelastic photo-production

Inelastic electro-production

Application to other processes

→ Inelastic photo-production

Inelastic electro-production

- \Rightarrow Other states than ${}^{3}S_{1}$:

- \Rightarrow Higher-order QCD corrections modify significantly the P_T scaling:
 - \rightarrow For the Υ , they bring an **agreement with experiments** (at last !)
 - \rightarrow For the J/ψ and ψ' , we still miss something . . .

- \Rightarrow Higher-order QCD corrections modify significantly the P_T scaling:
 - \rightarrow For the Υ , they bring an **agreement with experiments** (at last !)
 - \rightarrow For the J/ψ and ψ' , we still miss something ...
- So far,s-channel cuts (as well as real contributions) were overlooked
 - \rightarrow Not easy to deal with systematically
 - \rightarrow Yet, they are **likely to be significant**.

- \Rightarrow Higher-order QCD corrections modify significantly the P_T scaling:
 - \rightarrow For the Υ , they bring an **agreement with experiments** (at last !)
 - \rightarrow For the J/ψ and $\psi',$ we still miss something . . .
- So far,s-channel cuts (as well as real contributions) were overlooked
 - \rightarrow Not easy to deal with systematically
 - → Yet, they are **likely to be significant**.
- → (near) Future:
- \rightarrow Application to photo-production (check of the fit)
- \rightarrow AA COULISIONS F. Fleuret, J.P.L, A. Rakotozafindrabe, in progress.