Baryon Shape

Lorcé Cédric C.Lorce@ulg.ac.be

IFPA, AGO Department University of Liège, Belgium

March 3, 2008

-

Outline

2

Motivation

Nucleon is a very complicated system

Large Q^2 : almost free *light* quarks and gluons Low Q^2 : strongly bound *heavy* quarks

Questions about "internal" structure:

- How many quarks?
- Which types of quarks?
- Distribution?
- Angular momentum?
- . . .
- Questions about "external" structure:
 - Baryon size?
 - Spherical shape?
 - . . .

Motivation

Nucleon is a very complicated system

Large Q^2 : almost free *light* quarks and gluons Low Q^2 : strongly bound *heavy* quarks

Questions about "internal" structure:

- How many quarks?
- Which types of quarks?
- Distribution?
- Angular momentum?
- ...
- Questions about "external" structure:
 - Baryon size?
 - Spherical shape?
 - . . .

Motivation

Nucleon is a very complicated system

Large Q^2 : almost free *light* quarks and gluons Low Q^2 : strongly bound *heavy* quarks

Questions about "internal" structure:

- How many quarks?
- Which types of quarks?
- Distribution?
- Angular momentum?
- . . .
- Questions about "external" structure:
 - Baryon size?
 - Spherical shape?
 - . . .

Quadrupolar Distortions

Quadrupole moment

$$\mathcal{Q}_{ij} = \int \mathrm{d}^3 x \, \frac{3x_i x_j - \mathbf{x}^2 \delta_{ij}}{\mathbf{x}^2} \, \rho(\mathbf{x})$$

 $\mbox{Spherical} \ (\mathcal{Q}_{33}=0) \quad \mbox{Prolate} \ (\mathcal{Q}_{33}<0) \quad \mbox{Oblate} \ (\mathcal{Q}_{33}>0)$

A∄ ▶ ∢ ∃=

Experimental side

Nucleon no spectroscopic quadrupole moment Q = 0 (intrinsic Q_0 ?)

Delta too short lifetime ($\sim 10^{-23}$ s) to be measured

- $\gamma \textit{N} \rightarrow \Delta$ transition form factors:
 - magnetic dipole M1
 - electric quadrupole E2
 - Coulomb quadrupole C2

Chiral Quark-Soliton Model

Approximation:

• Gluon field is integrated out

 $\chi \rm QSM$ Lagrangian

 $\mathcal{L}_{\chi QSM} = ar{\psi} (i \gamma^\mu \partial_\mu - M U^{\gamma_5}) \psi$

is chiral invariant thanks to the chiral field U^{γ_5} [Diakonov & Petrov, Phys.Lett. B493 (2000) 169-174]

Large N_C logic: U^{γ_5} is a classical non-trivial relativistic mean field, *i.e.* a soliton

Chiral Quark-Soliton Model

Approximation:

• Gluon field is integrated out

 $\chi \rm QSM$ Lagrangian

 $\mathcal{L}_{\chi QSM} = ar{\psi} (i \gamma^\mu \partial_\mu - M U^{\gamma_5}) \psi$

is chiral invariant thanks to the chiral field U^{γ_5} [Diakonov & Petrov, Phys.Lett. B493 (2000) 169-174]

Large N_C logic: U^{γ_5} is a classical non-trivial relativistic mean field, *i.e.* a soliton

Solid line: model prediction

[Diakonov & Petrov, Nucl.Phys. B272 (1986) 457] Points: Lattice data

[Bowman & al., Nucl.Phys.Proc.Suppl. 128 (2004) 23]

Light-Cone Approach

Interacting theory vacuum contains indefinite number of $Q\bar{Q}$ pairs \Rightarrow no wave function

Physics does not depend on the way space-time is described

Light-cone description

$$A^{\mu}=(A^{+},\mathbf{A}^{\perp},A^{-})$$
 with $A^{\pm}=A^{0}\pm A^{3}$

Consequences for *massive* particles:

- $k^+ > 0$
- $|\Omega_0
 angle\equiv|0
 angle$
- concept of wave function well defined!

[Brodsky, Pauli & Pinsky, Phys.Rept. 301 (1998) 299-486]

Light-Cone Approach

Interacting theory vacuum contains indefinite number of $Q\bar{Q}$ pairs \Rightarrow no wave function

Physics does not depend on the way space-time is described

Light-cone description

$$A^{\mu}=(A^{+},\mathbf{A}^{\perp},A^{-})$$
 with $A^{\pm}=A^{0}\pm A^{3}$

Consequences for massive particles:

- $k^+ > 0$
- $\bullet ~|\Omega_0\rangle \equiv |0\rangle$
- oncept of wave function well defined!

[Brodsky, Pauli & Pinsky, Phys.Rept. 301 (1998) 299-486]

Light-Cone Wave Function

SU(3) baryon wave function

$$\begin{split} |\Psi_B\rangle &= \prod_1^{N_C} \int (\mathrm{d}\mathbf{p}) \mathcal{F}(\mathbf{p}) a^{\dagger}(\mathbf{p}) & \text{Valence part} \\ &\times \exp\left(\int (\mathrm{d}\mathbf{p}) (\mathrm{d}\mathbf{p}') \, a^{\dagger}(\mathbf{p}) \mathcal{W}(\mathbf{p},\mathbf{p}') b^{\dagger}(\mathbf{p}') \right) |\Omega_0\rangle & \text{Sea part} \end{split}$$

with

- valence level wave function $F \Rightarrow h$ (s-wave) and j (p-wave)
- quark-antiquark pair wave function W
- $R, R^{\dagger} SU(3)$ rotation matrices
- B^{*}(R) baryon rotational wave function

[Diakonov & Petrov, Phys.Rev. D72 (2005) 074009]

Light-Cone Wave Function

SU(3) baryon wave function

$$\begin{split} |\Psi_B\rangle &= \int \mathrm{d}R \, B^*(R) \prod_1^{N_C} \int (\mathrm{d}\mathbf{p}) R F(\mathbf{p}) a^{\dagger}(\mathbf{p}) & \text{Valence part} \\ &\times \exp\left(\int (\mathrm{d}\mathbf{p}) (\mathrm{d}\mathbf{p}') \, a^{\dagger}(\mathbf{p}) R W(\mathbf{p},\mathbf{p}') R^{\dagger} b^{\dagger}(\mathbf{p}')\right) |\Omega_0\rangle \text{ Sea part} \end{split}$$

with

- valence level wave function $F \Rightarrow h$ (s-wave) and j (p-wave)
- quark-antiquark pair wave function W
- $R, R^{\dagger} SU(3)$ rotation matrices
- $B^*(R)$ baryon rotational wave function

[Diakonov & Petrov, Phys.Rev. D72 (2005) 074009]

LCWF: Valence Part

One-particle Dirac Hamiltonian in mean field

$$\begin{pmatrix} h' + h M \sin P - j(M \cos P + E_{lev}) = 0\\ j' + 2j/r - j M \sin P - h(M \cos P - E_{lev}) = 0 \end{pmatrix}$$

・ 同 ト ・ 三 ト ・

$E_{lev} pprox 200$ MeV for M = 345 MeV

_ight-cone valence wave function

$$F^{j\sigma}(z,\mathbf{p}_{\perp}) = \sqrt{\frac{M}{2\pi}} \left[e^{j\sigma} h(p) + (p_{z}\mathbf{1} + i\mathbf{p}_{\perp} \times \tau_{\perp})^{\sigma}_{\sigma'} e^{j\sigma'} \frac{j(p)}{|\mathbf{p}|} \right]$$

with j isospin and σ spin indices, $p_z = z\mathcal{M} - E_{lev}, \ z$ longitudinal momentum fraction

LCWF: Valence Part

One-particle Dirac Hamiltonian in mean field

$$\begin{pmatrix} h' + h M \sin P - j(M \cos P + E_{lev}) = 0\\ j' + 2j/r - j M \sin P - h(M \cos P - E_{lev}) = 0 \end{pmatrix}$$

▲□ ► < □ ► </p>

 $E_{lev} pprox 200$ MeV for M = 345 MeV

Light-cone valence wave function

$$F^{j\sigma}(z,\mathbf{p}_{\perp}) = \sqrt{\frac{\mathcal{M}}{2\pi}} \left[e^{j\sigma} h(p) + (p_z \mathbf{1} + i\mathbf{p}_{\perp} \times \tau_{\perp})^{\sigma}_{\sigma'} e^{j\sigma'} \frac{j(p)}{|\mathbf{p}|} \right]$$

with j isospin and σ spin indices, $p_z = z\mathcal{M} - E_{lev}$, z longitudinal momentum fraction

LCWF: Sea Part

 $W \Rightarrow$ approximate quark propagator in mean field $\sim rac{1}{i\gamma^{\mu}\partial_{\mu}-MU^{\gamma_{5}}}$

Light-cone pair wave function

$$\begin{split} W_{j'\sigma'}^{j\sigma}(z,\mathbf{p}_{\perp};z',\mathbf{p}'_{\perp}) &= \frac{M\mathcal{M}}{2\pi Z} \left\{ \Sigma_{j'}^{j}(\mathbf{q}) [M(z'-z)\tau_{3} + \mathbf{Q}_{\perp} \cdot \tau_{\perp}]_{\sigma'}^{\sigma} \right. \\ &\left. + i\Pi_{j'}^{j}(\mathbf{q}) [-M(z'+z)\mathbf{1} + i\mathbf{Q}_{\perp} \times \tau_{\perp}]_{\sigma'}^{\sigma} \right\} \end{split}$$

where
$$\mathbf{Q}_{\perp} = z\mathbf{p}'_{\perp} - z'\mathbf{p}_{\perp}$$
,
 $Z = \mathcal{M}^2 z z'(z+z') + z(\mathbf{p}'^2_{\perp} + M^2) + z'(\mathbf{p}^2_{\perp} + M^2)$

Image: A image: A

3

LCWF: Rotational Part

$$T(B)_{j_1 j_2 j_3 j_4 f_5 \dots, k}^{f_1 f_2 f_3 f_4 j_5 \dots} = \int \mathrm{d}R \, B_k^*(R) R_{j_1}^{f_1} R_{j_2}^{f_2} R_{j_3}^{f_3}(R_{j_4}^{f_4} R_{f_5}^{\dagger j_5}) \dots$$

Proton: $p_k^*(R) \propto \epsilon_{kl} R_1^{\dagger l} R_3^3$

Proton 3Q rotational wave function

$$T(p)_{j_1 j_2 j_3 \dots, k}^{f_1 f_2 f_3} \propto \epsilon_{kl} \int dR \, R_1^{\dagger l} R_3^3 R_{j_1}^{f_1} R_{j_2}^{f_2} R_{j_3}^{f_3} \\ \propto \epsilon^{f_1 f_2} \epsilon_{j_1 j_2} \delta_1^{f_3} \epsilon_{k j_3} + \text{ cycl. perm. of } (1, 2, 3)$$

Non-relativistic wave function: $F^{j\sigma}(p) \approx e^{j\sigma}h(p)$

Proton non-relativistic 3*Q* wave function

 $\Psi_{p,k} \propto \epsilon^{f_1 f_2} \epsilon^{\sigma_1 \sigma_2} \delta_1^{f_3} \delta_k^{\sigma_3} h(p_1) h(p_2) h(p_3) + \text{ cycl. perm. of } (1,2,3)$

 \equiv *SU*(6) wave functions!

- 4 回 🕨 🔺 臣 🕨 🔺 臣 🕨

LCWF: Rotational Part

$$T(B)_{j_1 j_2 j_3 j_4 f_5 \dots, k}^{f_1 f_2 f_3 f_4 j_5 \dots} = \int \mathrm{d}R \, B_k^*(R) R_{j_1}^{f_1} R_{j_2}^{f_2} R_{j_3}^{f_3}(R_{j_4}^{f_4} R_{f_5}^{\dagger j_5}) \dots$$

Proton: $p_k^*(R) \propto \epsilon_{kl} R_1^{\dagger l} R_3^3$

Proton 3Q rotational wave function

$$T(p)_{j_1 j_2 j_3 \dots, k}^{f_1 f_2 f_3} \propto \frac{\epsilon_{kl}}{\int \mathrm{d}R} \frac{R_1^{\dagger l} R_3^3}{R_1^{f_1} R_3^{f_2} R_{j_1}^{f_2} R_{j_3}^{f_3}} \\ \propto \epsilon^{f_1 f_2} \epsilon_{j_1 j_2} \delta_1^{f_3} \epsilon_{k j_3} + \text{ cycl. perm. of } (1, 2, 3)$$

Non-relativistic wave function: $F^{j\sigma}(p) \approx e^{j\sigma}h(p)$

Proton non-relativistic 3*Q* wave function

 $\Psi_{p,k} \propto \epsilon^{f_1 f_2} \epsilon^{\sigma_1 \sigma_2} \delta_1^{f_3} \delta_k^{\sigma_3} h(p_1) h(p_2) h(p_3) + \text{ cycl. perm. of } (1,2,3)$

 \equiv *SU*(6) wave functions!

▲御▶ ▲屋▶ ▲屋▶

LCWF: Rotational Part

$$T(B)_{j_1 j_2 j_3 j_4 f_5 \dots, k}^{f_1 f_2 f_3 f_4 j_5 \dots} = \int \mathrm{d}R \, B_k^*(R) R_{j_1}^{f_1} R_{j_2}^{f_2} R_{j_3}^{f_3}(R_{j_4}^{f_4} R_{f_5}^{\dagger j_5}) \dots$$

Proton: $p_k^*(R) \propto \epsilon_{kl} R_1^{\dagger l} R_3^3$

Proton 3Q rotational wave function

$$T(p)_{j_1 j_2 j_3 \dots, k}^{f_1 f_2 f_3} \propto \frac{\epsilon_{kl}}{\int \mathrm{d}R} \frac{R_1^{\dagger l} R_3^3}{R_1^{f_1} R_{j_2}^3} R_{j_1}^{f_1} R_{j_2}^{f_2} R_{j_3}^{f_3} \\ \propto \epsilon^{f_1 f_2} \epsilon_{j_1 j_2} \delta_1^{f_3} \epsilon_{k j_3} + \text{ cycl. perm. of } (1, 2, 3)$$

Non-relativistic wave function: $F^{j\sigma}(p) \approx e^{j\sigma}h(p)$

Proton non-relativistic 3Q wave function

$$\Psi_{p,k} \propto \epsilon^{f_1 f_2} \epsilon^{\sigma_1 \sigma_2} \delta_1^{f_3} \delta_k^{\sigma_3} h(p_1) h(p_2) h(p_3) + \text{ cycl. perm. of } (1,2,3)$$

 \equiv *SU*(6) wave functions!

▲ 同 ▶ → 三 ▶

Baryon Components

Question:

Which part of baryons is actually made of 3Q?

$$3Q$$
 $5Q$
 $7Q$
 $B_8 \& B_{10}$
 $\approx 72\%$
 $\approx 21\%$
 $\approx 7\%$
 $B_{\overline{10}}$
 0%
 $\approx 61\%$
 $\approx 39\%$

-

____ ▶

Baryon Components

Question:

Which part of baryons is actually made of 3Q?

	3 <i>Q</i>	5 <i>Q</i>	7 <i>Q</i>
B ₈ & B ₁₀	pprox 72%	pprox 21%	pprox 7%
	0%		

-

Baryon Components

Question:

Which part of baryons is actually made of 3Q?

	3 <i>Q</i>	5 <i>Q</i>	7 <i>Q</i>
B ₈ & B ₁₀	pprox 72%	pprox 21%	pprox 7%
$B_{\overline{10}}$	0%	pprox 61%	pprox 39%

-

____ ▶

$\gamma N \rightarrow \Delta$ transition

SU(6) symmetry $\Rightarrow E2 = 0$

5*Q* contribution $\Rightarrow E2 \propto (3K_{33} - K_{\pi\pi}) = \int d^3q \, \frac{3q_z^2 - \mathbf{q}^2}{\mathbf{q}^2} f(\mathbf{q}) \quad \text{quadrupole!}$

《曰》《聞》《臣》《臣》

-

$\gamma N \rightarrow \Delta$ transition

$$SU(6)$$
 symmetry $\Rightarrow E2 = 0$

$\begin{array}{l} 5Q \text{ contribution} \\ \Rightarrow \quad E2 \propto (3K_{33} - K_{\pi\pi}) = \int \mathrm{d}^3 q \, \frac{3q_z^2 - \mathbf{q}^2}{\mathbf{q}^2} \, f(\mathbf{q}) \quad \text{quadrupole!} \end{array}$

《曰》《聞》《臣》《臣》

~

$\gamma N \rightarrow \Delta$ transition

$$SU(6)$$
 symmetry $\Rightarrow E2 = 0$

$\begin{array}{l} 5Q \text{ contribution} \\ \Rightarrow \quad E2 \propto (3K_{33} - K_{\pi\pi}) = \int \mathrm{d}^3 q \, \frac{3q_z^2 - \mathbf{q}^2}{\mathbf{q}^2} \, f(\mathbf{q}) \quad \text{quadrupole!} \end{array}$

イロト イポト イヨト イヨト

-

$\gamma N \rightarrow \Delta$ transition

$$SU(6)$$
 symmetry $\Rightarrow E2 = 0$

5Q contribution

$$\Rightarrow \quad E2 \propto (3K_{33} - K_{\pi\pi}) = \int d^3q \, \frac{3q_z^2 - \mathbf{q}^2}{\mathbf{q}^2} \, f(\mathbf{q}) \quad \text{quadrupole!}$$

	3 <i>Q</i>	3Q + 5Q	Exp.
$A_{3/2}$ (GeV ^{-1/2})	-0.296	-0.232	-0.250 ± 0.008
$A_{1/2}(GeV^{-1/2})$	-0.171	-0.129	-0.135 ± 0.006
$G_{M}^{*}\left(\mu _{N} ight)$	2.389	2.820	2.798
$G_{E}^{*}\left(\mu_{N} ight)$	0	0.026	0.046
$R_{EM} = -rac{G_E^*}{G_M^*}$	0	-0.9%	-1.6%
$\Gamma_{p\Delta}(MeV)$	0.411	0.573	0.564

2

《曰》《聞》《臣》《臣》

Quadrupolar effect

Example proton 5Q (valence) contribution $\Delta u = \frac{6}{25} \left[453 K_{\sigma\sigma}^{A} + 137 K_{\pi\pi}^{A} + 14 (3 K_{33}^{A} - K_{\pi\pi}^{A}) \right]$ $\delta u = \frac{6}{25} \left[453 K_{\pi\pi}^{T} + 137 K_{\pi\pi}^{T} - 7(3 K_{22}^{T} - K_{\pi\pi}^{T}) \right]$ $\Delta d = \frac{-4}{25} \left[159 K_{\sigma\sigma}^{A} + 91 K_{\pi\pi}^{A} - \frac{38(3 K_{33}^{A} - K_{\pi\pi}^{A})}{1000} \right]$ $\delta d = \frac{-4}{25} \left[159 K_{\sigma\sigma}^{T} + 91 K_{\pi\pi}^{T} + 19 (3 K_{33}^{T} - K_{\pi\pi}^{T}) \right]$ $\Delta s = \frac{-4}{25} \left[3K_{\pi\pi}^{A} + 17K_{\pi\pi}^{A} - \frac{16(3K_{33}^{A} - K_{\pi\pi}^{A})}{16(3K_{33}^{A} - K_{\pi\pi}^{A})} \right]$ $\delta s = -\frac{4}{25} \left[3K_{\sigma\sigma}^{T} + 17K_{\pi\pi}^{T} + 8(3K_{33}^{T} - K_{\pi\pi}^{T}) \right]$

イロト イポト イヨト イヨト 三日

Conclusion

- $\bullet\,$ Light-cone approach within a chiral model $\chi \rm QSM$
- Explicit baryon wave functions
- Expansion in Fock space (3Q, 5Q, ...)
- Explicit quadrupolar distortion
- Ab initio calculations

Problems (\Rightarrow outlook)

- Theoretical errors?
- *SU*(3) breaking?
- Valence level distortion due to the sea?

Conclusion

- $\bullet\,$ Light-cone approach within a chiral model $\chi \rm QSM$
- Explicit baryon wave functions
- Expansion in Fock space (3Q, 5Q, ...)
- Explicit quadrupolar distortion
- Ab initio calculations

Problems (\Rightarrow outlook)

- Theoretical errors?
- SU(3) breaking?
- Valence level distortion due to the sea?

Proton flavor composition

Vector charges "count" the number of quarks of a particular type

$$q_{tot} = q_{val} + q_{sea}$$
 with $q_{sea} = q_s - \bar{q}$

Proton up to 7Q component

Remarkable features:

- isospin-asymmetric sea $ar{d} ar{u} = 0.019$ v.s. 0.118 ± 0.012
- asymmetric strange quark distribution $s(z) \overline{s}(z) \neq 0$

Proton flavor composition

Vector charges "count" the number of quarks of a particular type

$$q_{tot} = q_{val} + q_{sea}$$
 with $q_{sea} = q_s - \bar{q}$

Proton up to 7Q component

	q_{val}	q_s	\overline{q}	q_{tot}
и	1.923	0.202	0.125	2
d	1.017	0.128	0.145	1
5	0.060	0.028	0.088	0

Remarkable features:

- isospin-asymmetric sea $ar{d} ar{u} = 0.019$ v.s. 0.118 ± 0.012
- asymmetric strange quark distribution $s(z) \overline{s}(z) \neq 0$

Proton flavor composition

Vector charges "count" the number of quarks of a particular type

$$q_{tot} = q_{val} + q_{sea}$$
 with $q_{sea} = q_s - \bar{q}$

Proton up to 7Q component

	q_{val}	q_s	\overline{q}	q_{tot}
и	1.923	0.202	0.125	2
d	1.017	0.128	0.145	1
s	0.060	0.028	0.088	0

Remarkable features:

- isospin-asymmetric sea $\bar{d} \bar{u} = 0.019$ v.s. 0.118 ± 0.012
- asymmetric strange quark distribution $s(z) \bar{s}(z) \neq 0$

Proton axial charges

isovector
$$g_A^{(3)} = \Delta u - \Delta d$$

octet $g_A^{(8)} = \frac{1}{\sqrt{3}} (\Delta u + \Delta d - 2\Delta s)$
flavor singlet $g_A^{(0)} = \Delta u + \Delta d + \Delta s$

- ● ● ●

э

Proton axial charges

isovector
$$g_A^{(3)} = \Delta u - \Delta d$$

octet $g_A^{(8)} = \frac{1}{\sqrt{3}} (\Delta u + \Delta d - 2\Delta s)$
flavor singlet $g_A^{(0)} = \Delta u + \Delta d + \Delta s$

$$\frac{g_A^{(3)}}{\Delta u + \Delta d} = \frac{g_A^{(3)}}{B_A} = \frac{g_A^$$

NR 3Q	$\frac{5}{3} = 1.667$		
3 <i>Q</i>	$\frac{5}{3} \Phi^{A} = 1.435$		
3Q + 5Q	1.241		
Exp.	1.257 ± 0.003		

Axial gluon anomaly $\Rightarrow \Delta q(Q^2) = \Delta q - lpha_S(Q^2) \Delta g(Q^2)$ Model scale $Q_0^2 \approx 0.36 \text{ GeV}^2$

- 4 聞 と 4 臣 と 4 臣 と

3

Proton axial charges

isovector
$$g_A^{(3)} = \Delta u - \Delta d$$

octet $g_A^{(8)} = \frac{1}{\sqrt{3}} (\Delta u + \Delta d - 2\Delta s)$
flavor singlet $g_A^{(0)} = \Delta u + \Delta d + \Delta s$
 $\begin{array}{c|c} g_A^{(3)} & g_A^{(8)} & g_A^{(0)} \\ \hline NR \, 3Q & \frac{5}{3} = 1.667 & \frac{1}{\sqrt{3}} = 0.577 & 1 \\ 3Q & \frac{5}{3} \Phi^A = 1.435 & \frac{1}{\sqrt{3}} \Phi^A = 0.497 & \Phi^A = 0.861 \\ \hline 3Q + 5Q & 1.241 & 0.444 & 0.787 \\ \hline Exp. & 1.257 \pm 0.003 & 0.34 \pm 0.02 & 0.31 \pm 0.07 \end{array}$

Axial gluon anomaly $\Rightarrow \Delta q(Q^2) = \Delta q - \alpha_S(Q^2) \Delta g(Q^2)$ Model scale $Q_0^2 \approx 0.36 \text{ GeV}^2$

-

Proton axial charges

isovector
$$g_A^{(3)} = \Delta u - \Delta d$$

octet $g_A^{(8)} = \frac{1}{\sqrt{3}} (\Delta u + \Delta d - 2\Delta s)$
flavor singlet $g_A^{(0)} = \Delta u + \Delta d + \Delta s$
 $\frac{g_A^{(3)} SU(2)}{SU(2)} = \frac{g_A^{(8)} SU(3)}{g_A^{(0)}(Q^2) SU(3)} = \frac{g_A^{(0)}(Q^2) SU(3)}{g_A^{(0)}(Q^2) SU(3)}$
 $\frac{NR 3Q}{3Q} = \frac{5}{3} = 1.667 \quad \frac{1}{\sqrt{3}} = 0.577 \quad 1$
 $\frac{5}{3} \Phi^A = 1.435 \quad \frac{1}{\sqrt{3}} \Phi^A = 0.497 \quad \Phi^A = 0.861$
 $\frac{3Q + 5Q}{Exp} = \frac{1.241}{1.257 \pm 0.003} \quad 0.34 \pm 0.02 \quad 0.31 \pm 0.07$

Axial gluon anomaly $\Rightarrow \Delta q(Q^2) = \Delta q - \alpha_S(Q^2) \Delta g(Q^2)$ Model scale $Q_0^2 \approx 0.36 \text{ GeV}^2$

< 🗇 > < 🖃 >

B) 3

Proton axial charges

isovector
$$g_A^{(3)} = \Delta u - \Delta d$$

octet $g_A^{(8)} = \frac{1}{\sqrt{3}} (\Delta u + \Delta d - 2\Delta s)$
flavor singlet $g_A^{(0)} = \Delta u + \Delta d + \Delta s$
 $\begin{array}{c|c} g_A^{(3)} SU(2) & g_A^{(8)} SU(3) & g_A^{(0)}(Q^2) SU(3) \\ \hline NR 3Q & \frac{5}{3} = 1.667 & \frac{1}{\sqrt{3}} = 0.577 & 1 \\ 3Q & \frac{5}{3} \Phi^A = 1.435 & \frac{1}{\sqrt{3}} \Phi^A = 0.497 & \Phi^A = 0.861 \\ 3Q + 5Q & 1.241 & 0.444 & 0.787 \\ Exp. & 1.257 \pm 0.003 & 0.34 \pm 0.02 & 0.31 \pm 0.07 \end{array}$
Axial gluon anomaly $\Rightarrow \Delta q(Q^2) = \Delta q - \alpha s(Q^2) \Delta g(Q^2)$

Axial gluon anomaly $\Rightarrow \Delta q(Q^2) = \Delta q - \alpha_S(Q^2) \Delta g(Q^2)$ Model scale $Q_0^2 \approx 0.36 \text{ GeV}^2$

On the light cone: magnetic moment \Leftrightarrow spin-flip matrix element γ^+ conserves helicity \Rightarrow relativistic process $h \leftrightarrow j$ and $j \leftrightarrow j$

On the light cone: magnetic moment \Leftrightarrow spin-flip matrix element γ^+ conserves helicity \Rightarrow relativistic process $h \leftrightarrow j$ and $j \leftrightarrow j$

 $SU(6) \text{ symmetry} \Rightarrow \frac{\mu_p}{\mu_n} = -\frac{3}{2}$ $\frac{\mu_p/\mu_n}{3Q} + \frac{-3}{2} = -1.5 \quad 2.534 \quad -1.689$ $\frac{3Q + 5Q}{Exp} - \frac{-1.479}{-1.460} \quad 2.793 \quad -1.913$

On the light cone: magnetic moment \Leftrightarrow spin-flip matrix element γ^+ conserves helicity \Rightarrow relativistic process $h \leftrightarrow j$ and $j \leftrightarrow j$

SU(6) sym	metry \Rightarrow	$\frac{\mu_p}{\mu_n} = -\frac{3}{2}$	
	μ_{p}/μ_{n}	$\mu_{P}(\mu_{N})$	$\mu_n(\mu_N)$
3 <i>Q</i>	$-\frac{3}{2} = -1.5$	2.534	-1.689
	-1.479		

On the light cone: magnetic moment \Leftrightarrow spin-flip matrix element γ^+ conserves helicity \Rightarrow relativistic process $h \leftrightarrow j$ and $j \leftrightarrow j$

$SU(6)$ symmetry $\Rightarrow \frac{\mu_p}{\mu_n} = -\frac{3}{2}$						
	μ_{p}/μ_{n}	$\mu_{P}(\mu_{N})$	$\mu_n(\mu_N)$			
3 <i>Q</i>	$-\frac{3}{2} = -1.5$	2.534	-1.689			
3Q + 5Q	-1.479	2.900	-1.961			
Exp.	-1.460	2.793	-1.913			

Extra: Pentaquark Width

Why is it small?

Qualitative picture: pentaquark has no 3Q component

 $M_{\Theta} = 1530$ MeV, $M_N = 940$ MeV and $F_K = 1.2 F_{\pi} = 112$ MeV

 $\Gamma_{\Theta} = 2 \frac{R_{\rm eff}^2 m |n| (M_{\Theta} - M_{H})^2 - m_{\rm eff}^2}{M_{\rm eff}^2} = -\frac{M_{\rm eff}^2 m_{\rm eff}^2}{M_{\rm eff}^2}$

 $|\mathbf{p}|=254$ MeV and kaon mass $m_K=495$ MeV .

Image: A mathematical states of the state

Extra: Pentaquark Width

Why is it small?

Qualitative picture: pentaquark has no 3Q component

$M_{\Theta} = 1530$ MeV, $M_N = 940$ MeV and $F_K = 1.2F_{\pi} = 112$ MeV

$\frac{1}{2}^{ op}$ hyperon decay width

$$\Gamma_{\Theta} = 2 \, \frac{g_{\Theta KN}^2 |\mathbf{p}|}{8\pi} \frac{(M_{\Theta} - M_N)^2 - m_K^2}{M_{\Theta}^2}$$

kaon momentum $|\mathbf{p}|=254$ MeV and kaon mass $m_K=495$ MeV

イロト イポト イヨト イヨト

Extra: Pentaquark Width

Why is it small?

Qualitative picture: pentaquark has no 3Q component

Generalized Goldberger-Treiman relation

 $g_{\Theta KN} = rac{g_A^{\Theta o KN}(M_{\Theta} + M_N)}{2F_K}$

 $M_{\Theta} = 1530$ MeV, $M_N = 940$ MeV and $F_{\mathcal{K}} = 1.2F_{\pi} = 112$ MeV

「 hyperon decay width

$$\Gamma_{\Theta} = 2 \frac{g_{\Theta KN}^2 |\mathbf{p}|}{8\pi} \frac{(M_{\Theta} - M_N)^2 - m_K^2}{M_{\Theta}^2}$$

kaon momentum $|{f p}|=254$ MeV and kaon mass $m_K=495$ MeV

Extra: Pentaquark Width

Why is it small?

Qualitative picture: pentaquark has no 3Q component

Generalized Goldberger-Treiman relation

$$g_{\Theta KN} = rac{g_A^{\Theta \to KN} (M_{\Theta} + M_N)}{2F_K}$$

 $M_{\Theta} = 1530$ MeV, $M_N = 940$ MeV and $F_{\mathcal{K}} = 1.2F_{\pi} = 112$ MeV

$\frac{1}{2}^+$ hyperon decay width

$$\Gamma_{\Theta} = 2 \, \frac{g_{\Theta KN}^2 |\mathbf{p}|}{8\pi} \frac{(M_{\Theta} - M_N)^2 - m_K^2}{M_{\Theta}^2}$$

kaon momentum $|\mathbf{p}|=254$ MeV and kaon mass $m_{K}=495$ MeV

Extra: Pentaquark Width

Why is it small?

Qualitative picture: pentaquark has no 3Q component

	$g_A^{\Theta \to KN}$	Øөкn	Γ_{Θ} (MeV)	$\mathcal{N}^{(3)}(N)$
NR 5Q	0.202	2.230	4.427	65%
5 <i>Q</i>	0.114	1.592	2.256	77.7%
5Q + 7Q	0.169	1.864	3.091	71.7%

< 🗇 🕨 < 🖻 🕨

3) (S