The Wave Function of $[{\bf 70},1^-]$ Baryons in the $1/N_c$ Expansion

N. Matagne

Universität Gießen

6th March 2008

in collaboration with Fl. Stancu

イロト イヨト イヨト イヨト

Outline

- 2 Baryon spectrum with a linear confinement and $N_c = 3$
- 3 The $[\mathbf{70}, 1^-]$ baryons in the $1/N_c$ expansion: the approximate wave function
- **4** The $[\mathbf{70}, 1^{-}]$ baryons in the $1/N_c$ expansion: the exact wave function

<ロ> (日) (日) (日) (日) (日)

Introduction

An introduction to large N_c QCD

- Impossible to solve QCD exactly
- No perturbative expansion of QCD at low energies with respect to g

- 't Hooft suggested to generalize QCD to N_c color (1974)
- $1/N_c$ should be the expansion parameter of QCD
- Witten power counting rules (1979)

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

The total wave function of baryons Ψ

 $\Psi = \psi_{lm} \chi \phi C$

where ψ_{lm} , χ , ϕ and C are the space, spin, flavor and color part.

Baryons in large N_c QCD

$$\varepsilon_{i_1i_2i_3\cdots i_{N_c}}q^{i_1}q^{i_2}q^{i_3}\cdots q^{i_{N_c}}$$

bound state of N_c quarks completely antisymmetric in color because baryons are colorless

Baryon mass grows with N_c

イロト イヨト イヨト イヨト

Introduction

 $SU(2N_f)$ is a good symmetry in $N_c \to \infty$ limit [1]

$$\operatorname{SU}(2N_f) \supset \operatorname{SU}_{\mathrm{S}}(2) \times \operatorname{SU}_f(N_f)$$

Assume a SU(6) \times O(3) symmetry at leading order SU($2N_f$) operators

$$S^{i} = q^{\dagger}(S^{i} \otimes \mathbb{1})q \quad (3,1)$$

$$T^{a} = q^{\dagger}(\mathbb{1} \otimes T^{a})q \quad (1, \text{adj})$$

$$G^{ia} = q^{\dagger}(S^{i} \otimes T^{a})q \quad (3, \text{adj})$$

Mass operator

$$M = \sum_{n} \frac{1}{N_c^{n-1}} c_n O^n, \quad O^n = O_\ell^{(k)} \cdot O_{SF}^{(k)}$$

[1] R. Dashen and A. V. Manohar, Phys. Lett. B315, 425 (1993)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Baryon spectrum with a linear confinement and $N_C = 3$

Baryon spectrum with a linear confinement and $N_c = 3$

Baryon spectrum (SU(6) notation: $[\mathbf{X}, l^P]$)

イロト イヨト イヨト イヨト

Quark-shell model configurations for N_c particles

- The number of excited quarks of large N_c baryons is the same as for $N_c=3$
- Suppression of the center of mass coordinate in the baryon wave function for satisfying translational invariance

SU(6) multi	plet	Ν	L	Ρ	Harmonic oscillator configuration
56		0	0	+	$ [N_c](0s)^{N_c}\rangle$
70		1	1	_	$ [N_c - 1, 1](0s)^{N_c - 1}(0p)\rangle$
56'		2	0	+	$\sqrt{\frac{N_c-1}{N_c}} [N_c](0s)^{N_c-1}(1s)\rangle - \sqrt{\frac{1}{N_c}} [N_c](0s)^{N_c-2}(0p)^2\rangle$
70		2	0	+	$\sqrt{\frac{1}{3}} [N_c-1,1](0s)^{N_c-1}(1s)\rangle + \sqrt{\frac{2}{3}} [N_c-1,1](0s)^{N_c-2}(0p)^2\rangle$
56		2	2	+	$\sqrt{\frac{N_c-1}{N_c}} [N_c](0s)^{N_c-1}(0d)\rangle - \sqrt{\frac{1}{N_c}} [N_c](0s)^{N_c-2}(0p)^2\rangle$
70		2	2	+	$\sqrt{\frac{1}{3}} [N_c-1,1](0s)^{N_c-1}(0d)\rangle + \sqrt{\frac{2}{3}} [N_c-1,1](0s)^{N_c-2}(0p)^2\rangle$
					· · · · · · · · · · · · · · · · · · ·

The $[70, 1^{-}]$ baryons in the $1/N_c$ expansion: the approximate wave function

The $[\mathbf{70}, 1^-]$ baryons in the $1/N_c$ expansion: the approximate wave function [2]

- Standard procedure (based on Hartree approximation): ground state core of $N_c 1$ quarks + excited quark (always the last quark of the wave function) Treat the core like a ground state baryon
- Orbital part: $s^{N_c-1}p$ no antisymmetrization
- Spin-flavor part approximate
- Introduce excited quark operators ℓ^i , s^i , t^a and g^{ia} + core operators S^i_c , T^a_c and G^{ia}_c .

[2] C. E. Carlson, C. D. Carone, J. L. Goity and R. F. Lebed, Phys. Rev. D59, 114008 (1999)

A totally symmetric orbital-spin-flavor state is given by

$$\Phi_{S} = \frac{1}{\sqrt{N_{c} - 1}} \sum_{Y} |[N_{c} - 1, 1]Y\rangle_{O}|[N_{c} - 1, 1]Y\rangle_{SF}$$

Illustration for $N_c = 5$ (center of mass motion removed)

N. Matagne (Universität Gießen)

<ロ> (日) (日) (日) (日) (日)

The $[{\bf 70},1^-]$ baryons in the $1/N_c$ expansion: the exact wave function

Two approaches:

Treat the multiplet without splitting the wave function [3]

$$|\ell SII_3; JJ_3\rangle = \sum_{m_\ell, S_3} \begin{pmatrix} \ell & S & | J \\ m_\ell & S_3 & | J_3 \end{pmatrix} |[N_c - 1, 1]SS_3II_3\rangle|[N_c - 1, 1]\ell m_\ell\rangle$$

Split the wave function into a core of N_c - 1 quarks + 1 quark [4]
 Two main differences:
 core not always in the ground state, last quark not always
 excited
 Present approach

[3] N. Matagne, Fl. Stancu, arXiv:hep-ph/0610099

[4] N. Matagne, Fl. Stancu, arXiv:0801.3575 [hep-ph], to be published in Phys. Rev. D

The exact decoupled wave function

$$\begin{split} |\ell_c \ell_q \ell S J J_3; II_3 \rangle_p &= \\ &\sum_{m_c, m_q, m_\ell, S_3} \left(\begin{array}{cc} \ell_c & \ell_q \\ m_c & m_q \end{array} \middle| \begin{array}{c} \ell \\ m_\ell \end{array} \right) \left(\begin{array}{cc} \ell & S \\ m_\ell & S_3 \end{array} \middle| \begin{array}{c} J \\ J_3 \end{array} \right) |\ell_c m_c \rangle |\ell_q m_q \rangle \\ &\times |[N_c - 1, 1]p; SS_3; II_3 \rangle \end{split}$$

where ℓ_c represents the excitation of the core

The spin-flavor part is

$$\begin{split} |[N_{c}-1,1]p;SS_{3};II_{3}\rangle &= \\ &\sum_{\substack{p',p'',m_{1},\\m_{2},i_{1},i_{2}}} \mathbf{K}([\mathbf{f}']\mathbf{p}'[\mathbf{f}'']\mathbf{p}''|[\mathbf{N_{c}}-1,1]\mathbf{p}) \left(\begin{array}{c|c} S_{c} & \frac{1}{2} & S\\ m_{1} & m_{2} & S_{3} \end{array}\right) \left(\begin{array}{c|c} I_{c} & \frac{1}{2} & I\\ i_{1} & i_{2} & I_{3} \end{array}\right) \\ &|S_{c}m_{1}\rangle|1/2m_{2}\rangle|I_{c}i_{1}\rangle|1/2i_{2}\rangle \end{split}$$

where $K([f']p'[f'']p''|[N_c-1,1]p)$ are isoscalar factors of S_{N_c} [5]

[5] N. Matagne, Fl. Stancu, Phys. Lett. B631, 7 (2005)

N. Matagne (Universität Gießen)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

For illustration the case for S = I = 1/2

The second column with p = 1 is new

$[f^{\prime}]p^{\prime}[f^{\prime\prime}]p^{\prime\prime}$	$[N_c - 1, 1]1$	$[N_c - 1, 1]2$
$\left[\frac{N_c+1}{2},\frac{N_c-1}{2}\right]1\left[\frac{N_c+1}{2},\frac{N_c-1}{2}\right]1$	0	$-\sqrt{\frac{3(N_c-1)}{4N_c}}$
$\left[\frac{N_c+1}{2},\frac{N_c-1}{2}\right]2\left[\frac{N_c+1}{2},\frac{N_c-1}{2}\right]2$	$\sqrt{\frac{N_{C}-3}{2(N_{C}-2)}}$	$\sqrt{\frac{N_c+3}{4N_c}}$
$\left[\frac{N_c+1}{2},\frac{N_c-1}{2}\right]2\left[\frac{N_c+1}{2},\frac{N_c-1}{2}\right]1$	$-rac{1}{2}\sqrt{rac{N_c-1}{N_c-2}}$	0
$\left[\frac{N_c+1}{2},\frac{N_c-1}{2}\right]1\left[\frac{N_c+1}{2},\frac{N_c-1}{2}\right]2$	$-rac{1}{2}\sqrt{rac{N_c-1}{N_c-2}}$	0

Similar Tables for the cases S = 1/2, I = 3/2 and S = 3/2, I = 1/2.

・ロト ・回ト ・ヨト ・ヨト

Matrix elements of the spin-spin and isospin-isospin operators with the exact and the approximate wave function

	$\langle s \cdot$	$S_c \rangle$	$\langle S_c^2 \rangle$		
	approx. w.f.	exact w.f.	approx. w.f.	exact w.f.	
² 8	$-rac{N_c+3}{4N_c}$	$-\tfrac{3(N_c-1)}{4N_c}$	$\frac{N_c+3}{2N_c}$	$\tfrac{3(N_C-1)}{2N_C}$	
⁴ 8	$\frac{1}{2}$	$-\tfrac{3(N_c-5)}{4N_c}$	2	$\frac{3(3N_c-5)}{2N_c}$	
² 10	-1	$-rac{3(N_c-1)}{4N_c}$	2	$\frac{3(N_C-1)}{2N_C}$	

	$\langle t \cdot \cdot$	$T_c \rangle$	$\langle T_c^2 \rangle$		
	approx. w.f.	exact w.f.	approx. w.f.	exact w.f.	
² 8	$-\frac{N_c+3}{4N_c}$	$-rac{3(N_c-1)}{4N_c}$	$\frac{N_c+3}{2N_c}$	$\tfrac{3(N_C-1)}{2N_C}$	
⁴ 8	-1	$-\tfrac{3(N_c-1)}{4N_c}$	2	$\tfrac{3(N_c-1)}{2N_c}$	
² 10	$\frac{1}{2}$	$-\frac{3(N_c-5)}{4N_c}$	2	$\frac{3(3N_c-5)}{2N_c}$	

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Results of the fits (nonstrange baryons)

• Only with the 7 resonances: ${}^2N_{1/2}(1538 \pm 18)$, ${}^4N_{1/2}(1660 \pm 20)$, ${}^2N_{3/2}(1523 \pm 8)$, ${}^4N_{3/2}(1700 \pm 50)$, ${}^4N_{5/2}(1678 \pm 8)$, ${}^2\Delta_{1/2}(1645 \pm 30)$ and ${}^2\Delta_{3/2}(1720 \pm 50)$

Fit 1

Operator		Approx. w.f. (MeV)	Exact w.f. (MeV)
$O_1 = N_c 1$	$c_1 =$	211 ± 23	299 ± 20
$O_2 = \ell^i s^i$	$c_2 =$	3 ± 15	3 ± 15
$O_3 = \frac{1}{N_c} s^i S_c^i$	$c_3 =$	-1486 ± 141	-1096 ± 125
$O_4 = \frac{1}{N_c} S_c^i S_c^i$	$c_4 =$	1182 ± 74	1545 ± 122
$O_5 = \frac{1}{N_c} t^a T_c^a$	$c_{5} =$	-1508 ± 149	417 ± 79
$\chi^2_{ m dof}$		1.56	1.56

The $[\mathbf{70}, 1^{-}]$ baryons in the $1/N_{c}$ expansion: the exact wave function

Fit 2

Operator		Approx. w.f. (MeV)	Exact w.f. (MeV)
$O_1 = N_c 1\!\!1$	$c_1 =$	513 ± 4	519 ± 5
$O_2 = \ell^i s^i$	$c_2 =$	3 ± 15	3 ± 15
$O'_3 = \frac{1}{N_c} \left(2s^i S^i_c + S^i_c S^i_c + \frac{3}{4} \right)$	$c'_3 =$	219 ± 19	150 ± 11
$O_5 = \frac{1}{N_c} t^a T_c^a$	$c_{5} =$	417 ± 80	417 ± 80
$\chi^2_{ m dof}$		1.04	1.04

Fit 3

Operator		Approx. w.f. (MeV)	Exact w.f. (MeV)
$O_1 = N_c 1$	$c_1 =$	516 ± 3	522 ± 3
$O_2 = \ell^i s^i$	$c_2 =$	3 ± 15	3 ± 15
$O_3 = \frac{1}{N_c} s^i S_c^i$	$c_3 =$	450 ± 33	450 ± 33
$O_{5}^{\prime} = \frac{1}{N_{c}} \left(2t^{a}T_{c}^{a} + T_{c}^{a}T_{c}^{a} + \frac{3}{4} \right)$	$c_5' =$	214 ± 28	139 ± 27
$\chi^2_{ m dof}$		1.04	1.04

◆□> ◆□> ◆目> ◆目> ◆目> ◆□>

The $[\mathbf{70}, 1^{-}]$ baryons in the $1/N_{c}$ expansion: the exact wave function

Fit 4

Operator		Approx. w.f. (MeV)	Exact w.f. (MeV)
$O_1 = N_c 1$	$c_1 =$	484 ± 4	484 ± 4
$O_2 = \ell^i s^i$	$c_2 =$	3 ± 15	3 ± 15
$O_{3}^{\prime} = \frac{1}{N_{c}} \left(2s^{i}S_{c}^{i} + S_{c}^{i}S_{c}^{i} + \frac{3}{4} \right)$	$c_3' =$	150 ± 11	150 ± 11
$O'_{5} = \frac{1}{N_{c}} \left(2t^{a}T^{a}_{c} + T^{a}_{c}T^{a}_{c} + \frac{3}{4} \right)$	$c'_5 =$	139 ± 27	139 ± 27
$\chi^2_{ m dof}$		1.04	1.04

N. Matagne (Universität Gießen)

6th March 2008 16 / 19

メロト メポト メヨト メヨト 二日

With 7 resonances and 2 mixing angles

$$|N_J(\text{upper})\rangle = \cos\theta_J |^4 N_J\rangle + \sin\theta_J |^2 N_J\rangle |N_J(\text{lower})\rangle = \cos\theta_J |^2 N_J\rangle - \sin\theta_J |^4 N_J\rangle$$

with $\theta_{1/2}^{exp}\approx -0.56~{\rm rad}$ and $\theta_{3/2}^{exp}\approx 0.10~{\rm rad}$ [6]

The physical masses become

$$M_J(\text{upper}) = M({}^4N_J) + c_2 \langle {}^4N_J | \ell \cdot s | {}^2N_J \rangle \tan \theta_J$$

$$M_J(\text{lower}) = M({}^2N_J) - c_2 \langle {}^4N_J | \ell \cdot s | {}^2N_J \rangle \tan \theta_J$$

[6] N. Isgur, Phys. Rev. D62, 054026 (2000)

◆□▶ ◆□▶ ★ □▶ ★ □▶ - □ - つへで

The $[\mathbf{70}, 1^{-}]$ baryons in the $1/N_{c}$ expansion: the exact wave function

Operator		Approx. w.f. (MeV)	Exact w.f. (MeV)
$O_1 = N_c 1\!\!1$	$c_1 =$	484 ± 4	484 ± 4
$O_2 = \ell^i s^i$	$c_2 =$	-9 ± 15	-9 ± 15
$O'_{3} = \frac{1}{N_{c}} \left(2s^{i}S^{i}_{c} + S^{i}_{c}S^{i}_{c} + \frac{3}{4} \right)$	$c'_3 =$	150 ± 11	150 ± 11
$O_5^\prime = \frac{1}{N_c} \left(2 t^a T_c^a + T_c^a T_c^a + \frac{3}{4} \right)$	$c'_5 =$	139 ± 27	139 ± 27
$\chi^2_{ m dof}$		1.05	1.05

メロト メポト メヨト メヨト 二日

Conclusions

- Identical χ^2_{dof} and rather similar results for the dynamical coefficient with exact or approximate wave function
- Contribution of I^2 as important as S^2
- Separation of S^2 and I^2 into $S^2_c,\,S_c\cdot s,\,I^2_c$ and $I_c\cdot i$ deteriorates the fit
- Results at variance with that of Pirjol and Schat [7] (claim that the inclusion of core and excited quark operators is necessary)
- \bullet Isoscalar factors of S_{N_c} for irreductible representation $\left[N_c-1,1\right]$ are derived

[7] D. Pirjol, C. L. Schat, arXiv:0709.0714 [hep-ph]

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・