

S.Ovyn

High energy photoproduction at the LHC

S. Ovyn

Université catholique de Louvain

Center for Particle Physics and Phenomenology (CP3)

on behalf of the Louvain Photon group :

J.de Favereau, V. Lemaître, Y. Liu, <u>S. Ovyn</u>, T. Pierzchala, K. Piotrzkowski, X. Rouby, N.Schul, M. Vander Donckt

Overview photon-photon:

- Introduction to photon-photon
- Detection and tagging
- Associated WH
- Single top
- Summary

Overview photoproduction:

- Introduction to photon-proton procedure
- Detection and tagging
- Associated WH
- Single top
- Summary

S.Ovyn

High energy photon-photon interactions at the LHC

08/03/2008

HLPW 2008 - Séverine Ovyn

Introduction to photon-photon processes

LHC as a photon-photon collider !

- Very clean event topologies :
 - centrally produced particles
 - 2 protons measured far away from the IP
- Factorization to
 - long distance photon exchange
 - short distance $\gamma\gamma{\rightarrow}X$

Using EPA

$$\sigma_{pp} = \int \sigma_{\gamma\gamma} \frac{dL_{\gamma\gamma}}{dW_{\gamma\gamma}} dW_{\gamma\gamma}$$

• Detection and tagging : use of very forward detectors (VFD)

HLPW 2008 - Séverine Ovvn

3

ŀ

Lepton pair production

08/03/2008

HLPW 2008 - Séverine Ovyn

3-

Supersymmetric pair production

08/03/2008

HLPW 2008 - Séverine Ovvn

W and Z pair production

В

UCL

S.Ovyn

processes

Lepton pairs

W and Z pairs

Susy pairs

Summary

- Very clean signature
 - → Stringent test of the SM

	η <2.5							
$\gamma\gamma \!$	$p_{T}^{\mu} > 3 \text{ GeV}$	p _T ^µ > 10 GeV						
σ_{acc} σ_{acc} (with VFD)	0.80 fb 0.70 fb	0.76 fb 0.66 fb						

Anomalous gauge boson couplings

Lagrangian for anomalous quartic vector boson couplings which conserves C, P as well as local $U(1)_{m}$ and SU(2):

$$L_{6}^{0} = \frac{-e^{2}}{8} \frac{a_{0}^{W}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} W^{+\alpha} W_{\alpha}^{-} - \frac{e^{2}}{16 \cos^{2} \theta_{W}} \frac{a_{0}^{Z}}{\Lambda^{2}} F_{\mu\nu} F^{\mu\nu} Z^{\alpha} Z_{\alpha}$$
$$L_{6}^{C} = \frac{-e^{2}}{16} \frac{a_{C}^{W}}{\Lambda^{2}} F_{\mu\alpha} F^{\mu\beta} (W^{+\alpha} W_{\beta}^{-} + W^{-\alpha} W_{\beta}^{+}) - \frac{e^{2}}{16 \cos^{2} \theta_{W}} \frac{a_{C}^{Z}}{\Lambda^{2}} F_{\mu\alpha} F_{\mu betha} Z^{\alpha} Z_{\beta}$$

no other background than SM $\gamma \rightarrow$ WW for 30 fb⁻¹ expected 22.8 (18.6) events

while current OPAL limits are:

-0.020 GeV < a_0^W < 0.020 GeV -0.052 GeV < a_C^W < 0.037 GeV erine Ovyn

08/03/2008

UCL S.Ovyn

γ processes Lepton pairs Susy pairs W and Z pairs Summary

Summary - outlook

- LHC is a $\gamma\gamma$ collider
- $\gamma\gamma \rightarrow \mu\mu$: interesting for luminosity monitoring and RP calibration
- $\gamma\gamma$ -> WW : limits on 4-vector coupling could be really improved
- SUSY pairs could be measured for high luminosity runs

3-

S.Ovyn

High energy photoproduction at the LHC

08/03/2008

HLPW 2008 - Séverine Ovvn

3-

LHC : a new HERA collider !

Photoproduction is traditionally studied at e-p collisions

pp ($\gamma q/g \rightarrow XY$) p

• γp events can also be tagged at the LHC

e.g. Using Large Rapidity Gaps (LRG)

• Higher luminosity than $\gamma\gamma$ events

Probe electroweak sector up to/beyond
 2 TeV !

Using EPA

$$\sigma_{pp} = \int \sigma_{\gamma q/g} (\hat{W}_{\gamma q/g}) f_{\gamma}(x_1) f_{q/g}(x_2, Q^2) dx_1 dx_2$$

where
$$\hat{W}_{\gamma q/g}^2 = 4 E_p x_1 x_2$$

BUT pp events are more dangerous backgrounds than in $\gamma\gamma$ interactions!

В

UCL

S.Ovyn

 γ p processes

Experimental

 $\gamma p \rightarrow WHq'$

Single Top

Summary

08/03/2008

HLPW 2008 - Séverine Ovyn

 \widehat{w}_0 [GeV]

γq→WZq'

Monte Carlo production

Experimental aspects

γ p processes

```
Experimental
γp -> WHq'
Single Top
Summary
```

Detection and tagging

Very low luminosity phase (<10³³ cm⁻² s⁻¹):

- Small event pile-up
 - Large rapidity gap (LRG) signature can be used
- For example, forward energy flows (into $3 < |\eta| < 5$) in one of the two hemispheres less than 50 GeV

Advantage : independent on very forward detectors features (Roman Pots)

Drawback : - low integrated luminosity expected

- kinematics is less constrain
- Expected integrated luminosity of 1 fb⁻¹ Low luminosity phase (~ 10³³ cm⁻² s⁻¹)
 - Use of very forward detector is mandatory !
 - Exclusivity cuts can be applied (e.g. vetoing soft tracks from event vertex)
 - Expected integrated luminosity of 10-30 fb⁻¹ HLPW 2008 - Séverine Ovvn

Associated WH photoproduction

- Very small statistics in not a discovery channel
- Interesting sensitivity for 2 topologies : Ivbb and $jjI^{\pm}I^{\pm}$
- For analysis, more specific cuts can be applied.

HLPW 2008 - Séverine Ovvn

Single top photoproduction

Single top photoproduction

γ p processes
 Experimental
 γp -> WHq'
 Single Top
 Introduction
 Wt-channel
 Anomalous top

Summary

Semi-leptonic topology

- 1 isolated lepton with $p_1 > 20 \text{ GeV}$
- 3 jets with $p_t > 30 \text{ GeV}$
- 1 tagged b-jet
- H_{t} (scalar sum of all visible E_{t} ,s) < 230 GeV
- M(bb) in a window of 20 GeV around M_w

Di-leptonic topology

- 2 isolated leptons with $p_1 > 20 \text{ GeV}$
- 1 jet with $p_t > 30 \text{ GeV}$
- jet tagged as b-jet
- Missing $E_t > 20 \text{ GeV}$

verine Ovyn

В

UCL

S.Ovyn

 γ p processes

Experimental

 $\gamma p \rightarrow WHq'$

Single Top

Summary

Introduction

Wt-channel

Anomalous top

σ uncertainty : semi-leptonic topology

• Cross sections after analysis cuts

		γp	backgro	unds			pp bac			
	Wt	tt(1l)	tt(2I)	W3j	Wbbj	tt(11)	tt(2I)	W+jets	Wbbj	tj
σ [fb]	440.6	671.75	159.08	2792.97	755.22 3	328025	77680	3261000	266587	67005
σ _{acc}	7.35	3.39	0.63	0.79	0.04	8.3	1.76	9.65	2.73	0.56

• Uncertainties after 10 fb⁻¹

Source	Uncertainty	$\Delta \sigma \sigma$ (semi-lept)
Statistical uncertainty	-	25.5%
Integrated luminosity	5%	10.5%
Theoretical uncertainty	-	9.7%
Jet energy Scale	5% (20 GeV)	23.4%
	3% (50 GeV)	
b-tagging efficiency	5%	24.0%
Total systematic uncertainty		34.9%

- This result can be improved (e.g. : tagging, exclusivity,...)
- More efficient suppression of pp backgrounds is mandatory!

HLPW 2008 - Séverine Ovyn

Single top photoproduction

Experimental

 $\gamma p \rightarrow WHq'$

Single Top

Summary

Introduction

Wt-channel

Anomalous top

σ uncertainty di-leptonic topology

• Cross sections after analysis cuts

		γp	bkg	рр	bkg
	Wt	tt	WWq'	tt	WWj
σ [fb]	104.33	159.1	62.5	77680	5234
$\sigma_{_{acc}}$	5.8	1.97	0.12	2.55	0.23

• Uncertainties after 10 fb⁻¹

Source	Uncertainty	∆at (di-lept)
Statistical uncertainty	-	17.6%
Integrated luminosity	5%	5.7%
Theoretical uncertainty	-	2.75%
Jet Energy Scale	5% (20 GeV)	10.7%
	3% (50 GeV)	
Btagging efficiency	5%	9.1%
Total systematic uncertainty		14.3%

Uncertainty on |V_{th}| : 12.1%

di-leptonic topology is competitive !

B

UCL

S.Ovyn

Summary - outlook

- High energy γp interactions have significant cross section at the LHC
- $\gamma p \rightarrow WHq'$ (100 fb⁻¹) events only sensitive for 2 topologies : lvbb and $jjl^{\pm}l^{\pm}$
 - Analysis are ongoing for those 2 cases, using analysis cuts.
- Wt-channel (10 fb⁻¹) seems very promising
 - For the di-leptonic topology, $|V_{tb}|$ uncertainty is similar to the one obtained using pp->Wt
 - The sensitivity at reconstructed level has to be evaluated
 - For the semi-leptonic topology, one needs to tackle pp backgrounds

- Anomalous top (1 fb $^{\text{-1}}$) can also be probed using very low integrated luminosity

Louvain Photon group

γ p processes
 Experimental
 γp -> WHq'
 Single Top
 Summary

Normalised to 1.0 70 70 Normalised to 1.0 0.0 40 $p \rightarrow Wt$ semi-leptonic $\gamma p \rightarrow Wt$ semi-leptonic gamma p → tt semi-leptonic mma n → tt semi-leptoni gamma p → Wiji semi-leptonic mma p → Wjjj semi-leptonic 0.3 0.03 0.2 0.02 0.1 0.01 0 L 0 0L 0 100 200 300 400 500 600 2 3 5 1 6 7 HT [GeV] N_{jet1}

<u>Theoretical errors</u> single top events : 6% tt events : 5% Wjjj events : 3% Wbbj events : 17% WWj : 6%

Backup slides

Semi-leptonic topology

UCL

S.Ovyn

			γp backs	grounds	5		pp	backgro	ounds	
	Wt	$t\overline{t}(1\ell)$	$t\overline{t}(2\ell)$	W3j	Wbbj	tj.	$t\overline{t}(1\ell)$	$t\overline{t}(2\ell)$	Wjets	Wbbj
$E_{\gamma Hem}$	309	489	131	2301	47	536	1095	291	28508	3901
$N_{lept} = 1$	146.7	229	64.0	1111	22.9	261	474	148.8	13347	1661
$N_{jet} = 3$	37.6	95.4	13.6	66.1	1.58	14.0	188	35.9	851	55.5
HT sum	22.0	18.2	3.82	17.7	0.32	5.36	47.1	11.9	343.4	22.22
b-tagging	9.05	8	1.78	2.14	0.15	2.21	20.7	5.53	29.8	9.5
RecW	7.35	3.39	0.63	0.79	0.04	0.56	8.3	1.76	9.65	2.73
Expected for 10/fb	73	34	6	8	negl.	1	83	18	96	27
sample		selecte	d Δc	σ JE	$\Delta \Delta L$	N_{b-tag}	$g \parallel \Delta I$	N_{Lum}	ΔN_{sta}	
S: Wt		73	4.3	8 3.'	72	3.65	3	.65	8.5	

	-				• • • • • • • • • • • • • • • • • • • •		0 0 00 0
	S: Wt	73	4.38	3.72	3.65	3.65	8.5
es	B: $t\overline{t}(1l)$	33	1.65	1.51	1.65	1.65	5.7
roc	B: $t\overline{t}(2l)$	6	0.3	0.37	0.3	0.3	2.4
d c	B: Wjjj	8	0.24	0	0.4	0.4	2.8
1λ	B: Wbbj	0	0	0.03	0.	0	0
	B: $t\overline{t}(1l)$	83	4.15	1.98	4.15	4.15	9.1
es	B: $t\overline{t}(2l)$	18	0.9	2.1	0.9	0.9	4.2
roc	B: W+jets	96	2.88	5.41	4.8	4.8	9.79
d c	B: tj	6	0.36	0.29	0.3	0.3	2.4
ld	B: Wbbj	27	4.59	1.65	1.35	1.35	5.2

di-leptonic topology

				~	γp backgrou	unds	pp bac	ckgrounds
			\mathbf{Wt}	$t\overline{t}(2\ell)$	$WW(2\ell)$	$WW(1\ell)$	$\mathbf{t}\overline{\mathbf{t}}(2\ell)$	$\mathbf{WW}(2\ell)$
B		$\mathbf{E}_{\gamma\mathbf{Hem}}$	89.0	130.6	58.0	222.8	291	105.9
9		${ m N_{lept}}=2$	21.3	31.6	14.7	0.01	57.9	22.3
		${ m N_{jet}}=1$	15.8	5.2	4.4	0.01	7.17	8.36
JCL		b-tagged	6.37	2.1	0.13	0.00	2.71	0.27
		$\mathbf{E_{miss}^{T}}$	5.84	1.97	0.12	0.00	2.55	0.23
5.Ovyn	Exp	ected in 10 fb^{-1}	58	20	1	0	25	2
		sample	selecte	ed $\Delta \sigma$	JES 4	ΔN_{b-tag}	ΔN_{Lum}	ΔN_{stat}
		S: Wt	58	3.48	0.5	2.9	2.9	7.6
	d	B: $t\overline{t}(2l)$	20	1	1.06	1	1	4.5
	3	B: WWj $(2l)$	1	0.06	0.01	0.05	0.05	1
	d	B: $t\overline{t}(2l)$	25	1.25	4.39	1.25	1.25	5
	우	B: WWj $(2l)$	2.26	0.14	0.27	0.11	0.11	1.5
		ΔN_b	_	1.6	5.73	2.41	1.55	_
		ΔV	1	ΔV	2 1 \angle	σ	$\Delta \sigma$	
			<u> 비_ 1</u>	$\frac{-}{b}$	_=_[_	- obs	$\frac{1}{2}$ th	
		$V_{_{tb}}$	2	$\left V_{tb}\right ^2$	2	σ	σ	

HLPW 2008 - Séverine Ovyn

P

UCL

S.Ovyn

Fast simulation of a LHC-like detector

Longitudal view of the detector

3-