Can nuclear models be made predictive?
Most nuclear models diverge when the are
extrapolated beyond regions where they are
fitted.

Nuclear matter a densities 2 to 3 times
normal nuclear matter density.

Nuclei far from the stability line or embedded
in a background of nuclear matter.

Get the relevant physics right before
attempting to simplify codes or to set up a
priori density functionals...

We discuss this issue in connection with the
so-called “relativistic mean field theory™.



Nuclei and nuclear matter are systems com-
posed of Dirac particles i which interact with
chiral and vector fields. The system is de-
scribed by the lagrangian:
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where ¢ is a scalar field and:

U = exp (iy57aba) wH = (¢, D)

The chiral symmetry breaking term gives the
pion a mass.

A primary concern is the spin-orbit interac-
tion.



In the Dirac representation:
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The spin orbit interaction is caused by the field
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For example, the Finelli,Kaiser,Vretenar,Weise
group estimate the scalar and vector fields gy
and gu¢ from QCD sum rule estimates. Using
also the Gell-Mann Oakes Renner relation they
estimate:
gp—g9e0 _ 1 on ps_ 4
JwP 4my +mg p
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gy — gpg =m — mqg = —Nz—gps ~ —320 MeV
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with oy ~ 45 MeV and my + my ~ 12 MeV'.
There is an estimated 10% to 20% error in
these estimates.



The Huguet,Caillon,Labarsouque group (nucl-
th/0712.3661) use a quark-diquark model of
the nucleon, based on a NJL lagrangian to es-
timate the change in mass of the nucleon due
to the change in the quark condensate at fi-
nite density. They calculate the corresponding
scalar and vector self-energies:

>o=g(p—wo) Xy =gwd
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They then use chiral perturbation theory to calculate the exchange (Fock)
term andAthe 2p-2h excitations produced by the pion, including excitation
of the

Such terms also contribute to the scalar and vector self-energies of the
nucleon.



Huguet,Caillon,Labarsouque (nucl-th/0712.3661




To simplify this SPA expose, we neglect the p
meson field, which acts in a N # Z nuclei and
we consider the case of a spherically symmetric
closed shell nucleus. When nucleons couple
to scalar and vector classical fields, the latter
are are determined by the energy functional
(similar to the original Walecka model):
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In nuclear matter, the energy per unit volume
reduces to:

E
M = — Z \/ k2 + m2 (Fermi sea contribution)

v k‘<kp

B % Z ( \/m _ m) (Dirac sea contribution)
k

m2 mg wp . . .
+V — —|—§ (scalar and vector field contributions)
g g mw

where m = gy and mqg = gyq.

Usual approximations made in practically all
applications so far:

e No-Dirac sea approximation: simply omit
the Dirac sea contribution.



Various contributions to E/A of symmetric nuclear matter.
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Problems concerning extrapolation to higher
(or lower) densities:

e Very strong dependence of various con-
tributions on the density: nuclear satu-
ration can be considerably modified by
small changes in the parameters of the
model.

e [ he neglect of the Dirac sea contribu-
tion.



When the mass of a Dirac particle is reduced
by about 40%, the overlap of a positive en-
ergy Dirac orbit ’-I—Ea7‘> with the corresponding

negative energy obrbit ‘—Ea¢> is on the aver-
age 6% for k = kp = 1.36 fm~—1 at normal
nuclear density and it reaches 17% at twice
nuclear matter density. If the contribution of
the Dirac sea is neglected, the Fermi sea orbits
should be kept orthogonal to the neglected un-
perturbed Dirac sea orbits. The Dirac hamil-
tonian h = &TV + Bm — gw¢ should be replaced
by the hamiltonian heff such that:
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E/A versus m/m0 at kF=1.36 fm**(-1)

(Vector field contribution omitted) (mcomp2.8g)
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Equilibrium m/mO with orthogonal Dirac sea

and parameters fitted to saturation. (mvar.8g)
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