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• universal TH ≃ 150 − 200 MeV for all (large)
√

s

• thermal transverse momentum spectra with same TH

caveat: strangeness suppression

begin by summarizing experimental situation

in elementary collisions



1. Thermal Hadron Production

what is “thermal”?

• equal a priori probabilities for all states in accord with a
given overall average energy ⇒ temperature T ;

• partition function of ideal resonance gas

ln Z(T ) = V
∑

i

di

(2π)3
φ(mi, T )

Boltzmann factor φ(mi, T ) = 4πm2
iTK2(mi/T )

• relative abundances
Ni

Nj

=
diφ(mi, T )

djφ(mj, T )

• transverse momenta

dN

dp2
T

∼ exp − 1

T

√

m2
i + p2

T .



Abundances

e+e−, LEP Data [Becattini 1996] e+e− √
s = 91.2 GeV

species measured fit

π+ 8.53 ± 0.40 8.72

π0 9.18 ± 0.82 9.83
K+ 1.18 ± 0.052 1.06

K0 1.015 ± 0.022 1.01
η 0.934 ± 0.13 0.908
ρ0 1.21 ± 0.22 1.16

K∗+ 0.357 ± 0.027 0.349
K∗0 0.372 ± 0.027 0.343

η′ 0.13 ± 0.05 0.1070
p 0.488 ± 0.059 0.484

φ 0.10 ± 0.0090 0.167
Λ 0.185 ± 0.0085 0.152

Ξ− 0.0122 ± 0.00079 0.011
Ξ∗0 0.0033 ± 0.00047 0.00391
Ω 0.0014 ± 0.00046 0.000782

Fit relative abundances to ideal

resonance gas of all hadronic

resonances, with M ≤ 1.7 GeV,

two parameters T and γs

T = 169.9 ± 2.6 MeV

γs = 0.691 ± 0.053

χ2/dof = 17.2/12

estimate systematic error by

varying resonance gas scheme,

contributing resonances

T = 170 ± 3 ± 6 MeV



similar analyses carried out for

• e+e− at
√

s = 14, 22, 29, 35, 43 GeV

• pp at
√

s = 19.4, 23.8, 26.0, 27.4 GeV

• pp̄ at
√

s = 200, 500, 900 GeV

• π+p at
√

s = 21.7 GeV

• K+p at
√

s = 11.5, 21.7 GeV
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Result:

T ≃ 170 ± 20 MeV

independent of

- collision energy

- collision configuration



Heavy ion collisions ⇒ baryon density

• resonance gas at T, µB; µB ⇓ for
√
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• elementary high energy collisions µB ≃ 0

• species abundances in high

energy heavy ion collisions

(peak SPS, RHIC)
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Result:

same hadronization temperature

for high energy heavy ion and

elementary collisions,

independent of collision energy



Conclude:

Hadron abundances in all high energy collisions
(e+e− annihilation, hadron-hadron interactions and
heavy ion collisions) are those of an ideal resonance
gas at a universal temperature

TH ≃ 170 ± 20 MeV.

NB: Strangeness production in elementary collisions uniformly

suppressed by γs ≃ 0.5 − 0.6

suppression weakened/removed in heavy ion collisions
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Why should high energy collisions produce a thermal medium?

Multiple parton interactions → kinetic thermalization?

nucleus-nucleus maybe; e+e−, hadron-hadron not

Is there another “non-kinetic” thermalization mechanism?

Is there a common origin of thermal production
in all high energy collisions?
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Multiple parton interactions → kinetic thermalization?
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Is there another “non-kinetic” thermalization mechanism?

Is there a common origin of thermal production
in all high energy collisions?

Passing colour charge disturbs vacuum, vacuum recovers
by hadron production according to maximum entropy

What does that mean?

Conjecture: Colour confinement ∼ black hole physics

[ Paolo Castorina, Dmitri Kharzeev, HS 2007 ]



2. Black Holes and Event Horizons

• black hole

neutron star after gravitational collaps
large mass M and compact size
gravitation so strong that matter &
light are confined ⇒ event horizon R
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• Hawking radiation [Hawking 1975]

quantum effect ∼ uncertainty principle
vacuum fluctuation e+e− outside event

horizon, with ∆E∆t ∼ 1
if in ∆t, e+ falls into black hole,
then e− can escape; equivalent:
e− tunnels through event horizon

e−e+



• Quantum Causality

no information about state of system beyond event
horizon; e+ on one side, e− on the other: EPR

⇒ Hawking radiation must be thermal

dN

dk
∼ exp{− k

TBH

}

with black hole temperature TBH =
h̄

8πc GM

relativistic quantum effect: disappears for h̄ → 0 or c → ∞

⇒ tunnelling through event horizon → thermal radiation
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horizon; e+ on one side, e− on the other: EPR

⇒ Hawking radiation must be thermal

dN

dk
∼ exp{− k

TBH

}

with black hole temperature TBH =
h̄

8πc GM

relativistic quantum effect: disappears for h̄ → 0 or c → ∞

⇒ tunnelling through event horizon → thermal radiation

• Unruh relation [Unruh 1976]

event horizon arises for systems in uniform acceleration



mass m in uniform acceleration a

d

dt

mv√
1 − v2

= F

v = dx/dt, F = ma, c = 1

solution: hyperbolic motion

x =
1

a
cosh aτ

t =
1

a
sinh aτ

1/a

mass m

t

x

region
hidden

event horizon

∃ event horizon: m cannot reach hidden region
observer in hidden region cannot communicate with m

m passes through vacuum, can use part of acceleration
energy to excite vacuum fluctuations on-shell



1/a

mass m

t

x

e+ee+ absorbed in detector on m

e− disappears beyond event horizon

“quantum entanglement”

∼ Einstein-Podolsky-Rosen effect

observer on m as well as observer in hidden region have
incomplete information: ⇒ each sees thermal radiation

observer on m:
physical vacuum = thermal medium of temperature TU

Unruh temperature TU =
h̄a

2πc
again relativistic quantum effect



for observer in hidden region, Unruh radiation:

passage of m ⇒ thermal radiation of temperature TU

Black hole event horizon R = 2GM (Schwarzschild radius)

F = ma = G
Mm

R2
⇒ a =

GM

R2
=

1

4GM

⇒ TU =
a

2π
=

1

8πGM
= TBH

recover Hawking result
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recover Hawking result

In general: [T. D. Lee 1986, Parikh & Wilczek 2000]

event horizon ∼ information transfer forbidden

⇒ quantum tunnelling ∼ thermal radiation

Relation to QCD?



Gravitation:

matter and light are confined to restricted region of space
(“black hole”)

QCD:

coloured quarks and gluons are confined to restricted region
of space, colourless from the outside (“colour singlet”)

Hadrons as black hole analogue in strong interaction physics?
[Recami & Castorina 1976, Salam & Strathdee 1978]

Schwarzschild radius of nucleon

Rn
g = 2 G m ≃ 1.3 × 10−38 GeV−1 ≃ 3 × 10−39 fm

Volume of nucleon too big by 10100 to be a gravitational
black hole



But gravitation → strong interaction: Gm2 → αs , hence

Rn
s =

2αs

m
≃ 1 fm

if αs ≃ 2 − 3.

Hadron radius ∼ “strong” Schwarzschild radius

Hadrons ∼ “strong” black holes
coloured inside, colourless outside



But gravitation → strong interaction: Gm2 → αs , hence

Rn
s =

2αs

m
≃ 1 fm

if αs ≃ 2 − 3.

Hadron radius ∼ “strong” Schwarzschild radius

Hadrons ∼ “strong” black holes
coloured inside, colourless outside

More generally:

consider interacting hadrons, multihadron production, in
the framework of black hole physics concepts

Black hole: event horizon for all interactions

Strong black hole: event horizon for strong interactions



3. Pair Production and String Breaking

Basic process: two -jet e+e− annihilation, cms energy
√

s:

e+e− → γ∗ → qq̄ → hadrons

qq̄ separate subject to constant confining force F = σ

initial quark velocity v0 =
p√

p2 + m2
, p ≃

√
s/2

Solve ma = σ (hyperbolic motion): [Hosoya 1979, Horibe 1979]

x̃ = [1 −
√

1 − v0t̃ + t̃2] , x̃ = x/x0 , t̃ = t/x0

with x0 =
m

σ

1
√

1 − v2
0

=
m

σ
γ =

1

a
γ



classical turning point v(t∗) = 0 at

x∗ = x(t∗) =
m

σ
γ [1−

√

1 − (v0/2)2] ≃
√

s

2σ

qq̄ can separate arbitrarily far
if

√
s is large enough

t

x* x

What’s wrong?



classical turning point v(t∗) = 0 at

x∗ = x(t∗) =
m

σ
γ [1−

√

1 − (v0/2)2] ≃
√

s

2σ

qq̄ can separate arbitrarily far
if

√
s is large enough

t

x* x

t

xxQ x*

What’s wrong? classical event horizon

Strong field ⇒ vacuum unstable
against pair production [Schwinger 1951]

when σx > σxQ ≡ 2m
string connecting qq̄ breaks

Result: quantum event horizon



Hadron production in e+e− annihilation:

“inside-outside cascade” [Bjorken 1976]

q q qqqq

γ γ

1 1

qq̄ flux tube has thickness rT ≃
√

√

√

√

√

√

2

πσ

q1q̄1 at rest in cms, but kT ≃ 1

rT

≃
√

√

√

√

√

√

πσ

2

qq̄ separation at q1q̄1 production σx(qq̄) = 2
√

m2 + k2
T



q1 screens q̄ from q, hence string breaking at

xq ≃ 2

σ

√

m2 + (πσ/2) ≃
√

2π/σ ≃ 1 fm

new flux tubes qq̄1 and q̄q1

stretch q1q̄1

to form new pair q2q̄2

σx(q1q̄1) = 2
√

m2 + k2
T

q

q q

q q

q

q
1 1

2

2
3

γ

equivalent:
q̄1 reaches q1q̄1 event horizon,
tunnels to become q̄2

emission of hadron q̄1q2

as Hawking radiation



self-similar pattern:

screening
string breaking
tunnelling
quark acceleration

/deceleration
Hawking radiation

q

q q

q
1

2
3

γ

q

accelerate

decelerate
q

2q
1

hadron

t quark deceleration

quark acceleration

x

hadron radiation



temperature of Hawking radiation: what acceleration?
(q̄1 → q̄2 → q̄3 → ...)

a = F/m ⇒ aq =
σ

wq

=
σ

√

m2
q + k2

q

string breaking & thickness determine kq ≃
√

πσ/2

⇒ aq ≃ σ
√

m2
q + (σ/2π)

for light quarks, mq ≪ √
σ ≃ 420 MeV, hence

T =
a

2π
≃

√

√

√

√

√

√

σ

2π
≃ 170 MeV

temperature of hadronic Hawking-Unruh radiation in QCD



γ

hadrons

hadronization pattern:

hadron multiplicity?

thickness of classical “overstretched” string:

R2
T =

2

πσ

K
∑

k=0

1

2k + 1
≃ 2

πσ
ln 2K ≃ 2

πσ
ln

√
s

quantum breaking at xq ∼ rT , hence hadron multiplicity

ν(s) ≃ R2
T

r2
T

≃ ln
√

s

NB: parton evolution (minijets), multiple jets lead to stronger increase



generalize:

e+e− annihilation hadron-hadron collision
“black hole” creation “black hole” fusion

h hγ

both → self-similar cascades

Heavy ion collisions: interference between emitted hadrons



4. Strangeness Production
[Becattini, Castorina, Manninen, HS 2008]

Unruh temperature ∼ 1 / mass of secondary; e.g. :

spontaneous production in strong field E (Schwinger)

P (m.E) ∼ exp{−πm2/eE}, a =
eE
m

so that

P (m, E) ∼ exp{−m/TU}, TU =
ae

2π
=

eE
2πm

we had for finite quark mass mq

aq ≃ σ
√

m2
q + (σ/2π)



produced meson consists
of quarks q̄1 and q2

q

q q

q
1

2
3

γ

q

accelerate

decelerate
q

2q
1

hadron

meson containing two
different quark masses
will have average acceleration

ā12 =
w1a1 + w2a2

w1 + w2

=
2σ

w1 + w2

; wi ≃
√

m2
i + (σ/2π)

leading to
T (12) ≃ a12

2π

easily extended to baryons; result: five temperatures

T (00) = T (000); T (s0); T (ss) = T (sss); T (00s); T (0ss)

fully determined by σ and ms



T [GeV]

T (00) 0.164

T (0s) 0.156

T (ss) 0.148

T (000) 0.164

T (00s) 0.158

T (0ss) 0.153

T (sss) 0.148

for σ ≃ 0.17 GeV2 and ms ≃ 0.08 GeV

obtain temperatures:

does this work?

analyse all existing high energy e+e− data

hadron production data in e+e− annhilation exist at

√
s = 14, 22, 29, 35, 43, 91, 180 GeV

(PETRA, PEP, LEP)

example:

long-lived hadrons produced at LEP for
√

s = 91.25 GeV



e+e− √
s = 91.2 GeV

species measured fit

π+ 8.50 ± 0.10 8.44

π0 9.61 ± 0.29 9.81
K+ 1.127 ± 0.026 1.055

K0 1.038 ± 0.001 1.015
η 1.059 ± 0.996 0.910

ω 1.024 ± 0.059 0.996
p 0.519 ± 0.018 0.570

η′ 0.166 ± 0.047 0.108
φ 0.0977 ± 0.0058 0.1164
Λ 0.1943 ± 0.0038 0.1846

Σ+ 0.0535 ± 0.0052 0.0428
Σ0 0.0389 ± 0.0041 0.0435

Σ− 0.0410 ± 0.0037 0.0390
Ξ− 0.01319 ± 0.0005 0.0126

Ω 0.00062 ± 0.0001 0.0009

fit data in terms
of σ and ms

result:

σ = 0.169 ± 0.002 GeV2

ms = 0.083 GeV

χ2/dof = 22/12

standard values:

σ = 0.195 ± 0.030 GeV2

ms = 0.095 ± 0.025 GeV

perform analyses for all data
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Conclude

thermal hadron production in e+e− annihilation, includ’g
strangeness suppression, is reproduced parameter-free as

Hawking-Unruh radiation of QCD

⇒ pp/pp̄ (straight-forward); heavy ions (interesting)



5. Kinetic vs. Stochastic Thermalization

Kinetic thermalization:

time evolution of given non-equilibrium configuration
(two parallel colliding parton beams)

through multiple collisions
to a time-independent equilibrium state

(quark-gluon plasma)
requires

• many constituents

• sufficiently large interaction cross sections

• sufficiently long time

thermal hadron production in e+e−, pp/pp̄?

Hagedorn: the emitted hadrons are “born into equilibrium”



Hawking radiation:

• final state produced at random from the set of all states
corresponding to temperature TH

determined by confining field

• this set of all final states is same as that
produced by kinetic thermalization

• measurements cannot tell if the equilibrium was reached
by thermal evolution or by throwing dice:

⇒ Ergodic Equivalence Principle ⇐

gravitation ∼ acceleration kinetic ∼ stochastic
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6. Summary

• The physical vacuum is an event horizon for coloured
quarks and gluons; thermal hadrons are Hawking-Unruh
radiation produced by quark tunnelling through event
horizon.

• The corresponding hadronization temperature TH is de-
termined by quark acceleration and deceleration in the
colour field at the (quantum) horizon.

• Strangeness suppression is provided by the modifica-
tion of the Unruh temperature due to the strange quark
mass.

• Given string tension σ and strange quark mass ms, the
resulting scenario provides a parameter-free description
of thermal hadron production in elementary high energy
interactions.



God does play dice, but He sometimes throws
them where they can’t be seen.

Stephen Hawking


