The Origin of Thermal Hadron Production

Helmut Satz

Universität Bielefeld, Germany

basic observation in all high energy multihadron production

thermal production pattern

Fermi, Landau, Pomeranchuk, Hagedorn

- ullet species abundances \sim ideal resonance gas at T_H
- universal $T_H \simeq 150-200~{
 m MeV}$ for all (large) \sqrt{s}
- ullet thermal transverse momentum spectra with same T_H

basic observation in all high energy multihadron production

thermal production pattern

Fermi, Landau, Pomeranchuk, Hagedorn

- ullet species abundances \sim ideal resonance gas at T_H
- universal $T_H \simeq 150-200~{
 m MeV}$ for all (large) \sqrt{s}
- ullet thermal transverse momentum spectra with same T_H

caveat: strangeness suppression

basic observation in all high energy multihadron production

thermal production pattern

Fermi, Landau, Pomeranchuk, Hagedorn

- ullet species abundances \sim ideal resonance gas at T_H
- universal $T_H \simeq 150-200~{\rm MeV}$ for all (large) \sqrt{s}
- thermal transverse momentum spectra with same T_H

caveat: strangeness suppression

begin by summarizing experimental situation in elementary collisions

1. Thermal Hadron Production

what is "thermal"?

- equal a priori probabilities for all states in accord with a given overall average energy \Rightarrow temperature T;
- partition function of ideal resonance gas

$$\ln Z(T) = V \sum\limits_i rac{d_i}{(2\pi)^3} \phi(m_i,T)$$

Boltzmann factor $\phi(m_i,T)=4\pi m_i^2 T K_2(m_i/T)$

$$ullet$$
 relative abundances $rac{N_i}{N_j} = rac{d_i \phi(m_i,T)}{d_i \phi(m_i,T)}$

$$ullet ext{transverse momenta} \qquad rac{dN}{dp_T^2} \sim \exp{-rac{1}{T}\sqrt{m_i^2+p_T^2}}.$$

Abundances

 e^+e^- , LEP Data [Becattini 1996]

Fit relative abundances to ideal resonance gas of all hadronic resonances, with $M \leq 1.7$ GeV, two parameters T and γ_s

$$T=169.9\pm 2.6 \; {
m MeV}$$
 $\gamma_s=0.691\pm 0.053$ $\chi^2/{
m dof}=17.2/12$

estimate systematic error by varying resonance gas scheme, contributing resonances

$e^+e^-\;\sqrt{s}=91.2\;GeV$				
species	measured			fit
π^+	8.53	土	0.40	8.72
π^0	9.18	\pm	0.82	9.83
K^+	1.18	\pm	0.052	1.06
K^0	1.015	\pm	0.022	1.01
η	0.934	\pm	0.13	0.908
$ ho^0$	1.21	\pm	0.22	1.16
K^{*+}	0.357	\pm	0.027	0.349
K^{*0}	0.372	\pm	0.027	0.343
η'	0.13	\pm	0.05	0.1070
p	0.488	\pm	0.059	0.484
ϕ	0.10	\pm	0.0090	0.167
Λ	0.185	\pm	0.0085	0.152
[1]	0.0122	\pm	0.00079	0.011
\(\pi^{*0}\)	0.0033	\pm	0.00047	0.00391
Ω	0.0014	\pm	0.00046	0.000782

 $T=170\pm3\pm6~\mathrm{MeV}$

similar analyses carried out for

•
$$e^+e^-$$
 at $\sqrt{s} = 14$, 22, 29, 35, 43 GeV

•
$$pp$$
 at $\sqrt{s} = 19.4$, 23.8, 26.0, 27.4 GeV

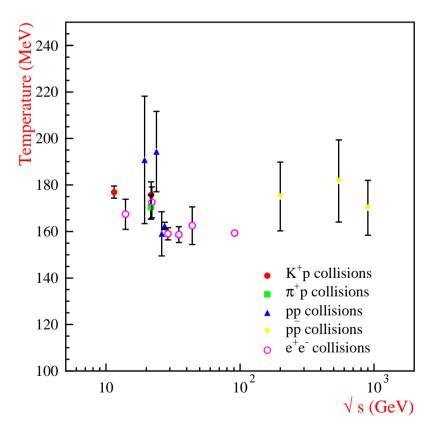
$$ullet$$
 $par{p}$ at $\sqrt{s}=200,\ 500,\ 900\ {
m GeV}$

•
$$\pi^+ p$$
 at $\sqrt{s} = 21.7 \text{ GeV}$

$$\bullet$$
 K^+p at $\sqrt{s}=11.5,\ 21.7\ {
m GeV}$

similar analyses carried out for

- e^+e^- at $\sqrt{s} = 14$, 22, 29, 35, 43 GeV
- pp at $\sqrt{s} = 19.4$, 23.8, 26.0, 27.4 GeV
- $p\bar{p}$ at $\sqrt{s} = 200, 500, 900 \text{ GeV}$
- $\pi^+ p$ at $\sqrt{s} = 21.7 \text{ GeV}$
- $K^+ p$ at $\sqrt{s} = 11.5, 21.7 \text{ GeV}$


compilation Becattini 2006

Result:

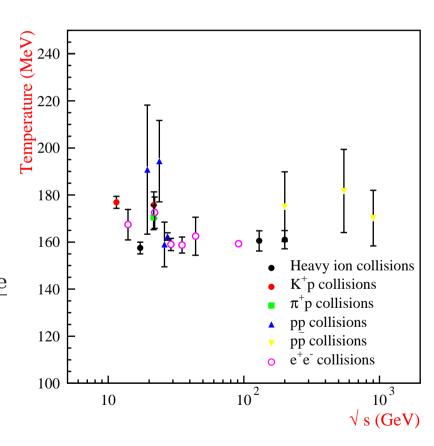
$T \simeq 170 \pm 20 \; \mathrm{MeV}$

independent of

- collision energy
- collision configuration

Heavy ion collisions \Rightarrow baryon density

- resonance gas at T, μ_B ; $\mu_B \downarrow \text{ for } \sqrt{s} \uparrow$
- elementary high energy collisions $\mu_B \simeq 0$
- species abundances in high energy heavy ion collisions (peak SPS, RHIC)


Heavy ion collisions \Rightarrow baryon density

- resonance gas at T, μ_B ; $\mu_B \downarrow for \sqrt{s} \uparrow f$
- elementary high energy collisions $\mu_B \simeq 0$
- species abundances in high energy heavy ion collisions (peak SPS, RHIC)

compilation Becattini 2006

Result:

same hadronization temperature for high energy heavy ion and elementary collisions, independent of collision energy

Conclude:

Hadron abundances in all high energy collisions $(e^+e^-$ annihilation, hadron-hadron interactions and heavy ion collisions) are those of an ideal resonance gas at a universal temperature

$$T_H \simeq 170 \pm 20 \; \mathrm{MeV}.$$

NB: Strangeness production in elementary collisions uniformly suppressed by $\gamma_s \simeq 0.5-0.6$

suppression weakened/removed in heavy ion collisions

Conclude:

Hadron abundances in all high energy collisions $(e^+e^-$ annihilation, hadron-hadron interactions and heavy ion collisions) are those of an ideal resonance gas at a universal temperature

$$T_H \simeq 170 \pm 20 \; \mathrm{MeV}.$$

NB: Strangeness production in elementary collisions uniformly suppressed by $\gamma_s \simeq 0.5-0.6$

suppression weakened/removed in heavy ion collisions

WHY?

Why should high energy collisions produce a thermal medium?

Multiple parton interactions $\rightarrow \underline{\text{kinetic}}$ thermalization? nucleus-nucleus maybe; e^+e^- , hadron-hadron not

Is there another "non-kinetic" thermalization mechanism?

Is there a <u>common</u> origin of thermal production in all high energy collisions?

Why should high energy collisions produce a thermal medium?

Multiple parton interactions $\rightarrow \underline{\text{kinetic}}$ thermalization? nucleus-nucleus maybe; e^+e^- , hadron-hadron not

Is there another "non-kinetic" thermalization mechanism?

Is there a <u>common</u> origin of thermal production in all high energy collisions?

Passing colour charge disturbs vacuum, vacuum recovers by hadron production according to maximum entropy

What does that mean?

Why should high energy collisions produce a thermal medium?

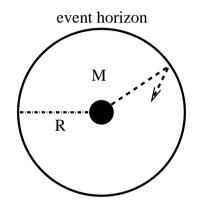
Multiple parton interactions $\rightarrow \underline{\text{kinetic}}$ thermalization? nucleus-nucleus maybe; e^+e^- , hadron-hadron not

Is there another "non-kinetic" thermalization mechanism?

Is there a <u>common</u> origin of thermal production in all high energy collisions?

Passing colour charge disturbs vacuum, vacuum recovers by hadron production according to maximum entropy

What does that mean?

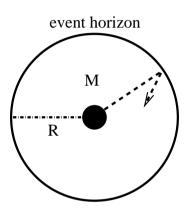

Conjecture: Colour confinement \sim black hole physics

[Paolo Castorina, Dmitri Kharzeev, HS 2007]

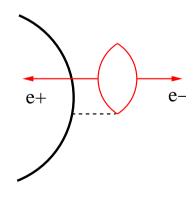
2. Black Holes and Event Horizons

• black hole

neutron star after gravitational collaps large mass M and compact size gravitation so strong that matter & light are confined \Rightarrow event horizon R no communication with outside, but...


2. Black Holes and Event Horizons

• black hole


neutron star after gravitational collaps large mass M and compact size gravitation so strong that matter & light are confined \Rightarrow event horizon R no communication with outside, but...

• Hawking radiation

quantum effect \sim uncertainty principle vacuum fluctuation e^+e^- outside event horizon, with $\Delta E \Delta t \sim 1$ if in Δt , e^+ falls into black hole, then e^- can escape; equivalent: e^- tunnels through event horizon

[Hawking 1975]

• Quantum Causality

no information about state of system beyond event horizon; e^+ on one side, e^- on the other: EPR

 \Rightarrow Hawking radiation must be thermal

$$rac{dN}{dk} \sim \exp\{-rac{k}{T_{BH}}\}$$
 with black hole temperature $T_{BH} = rac{\hbar}{8\pi c\,GM}$

$$T_{BH} = rac{n}{8\pi c\,GM}$$

relativistic quantum effect: disappears for $\hbar \to 0$ or $c \to \infty$

 \Rightarrow tunnelling through event horizon \rightarrow thermal radiation

• Quantum Causality

no information about state of system beyond event horizon; e^+ on one side, e^- on the other: EPR

 \Rightarrow Hawking radiation must be thermal

$$rac{dN}{dk} \sim \exp\{-rac{k}{T_{BH}}\}$$
 with black hole temperature $T_{BH} = rac{\hbar}{8\pi c\,GM}$

$$T_{BH} = rac{m{n}}{8\pim{c}\,GM}$$

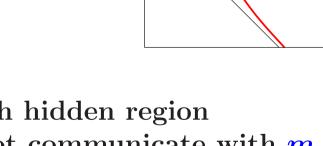
relativistic quantum effect: disappears for $\hbar \to 0$ or $c \to \infty$

 \Rightarrow tunnelling through event horizon \rightarrow thermal radiation

• Unruh relation

[Unruh 1976]

event horizon arises for systems in uniform acceleration


mass m in uniform acceleration a

$$rac{d}{dt}rac{mv}{\sqrt{1-v^2}}=F$$

 $v = dx/dt, \, F = ma, \, c = 1$

solution: hyperbolic motion

$$x = rac{1}{a} \cosh a au$$
 $t = rac{1}{a} \sinh a au$

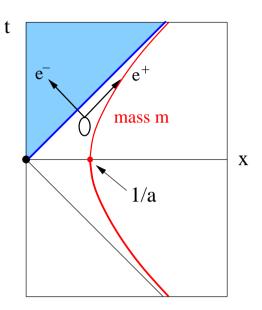
hidden region

mass m

1/a

X

event horizon


 \exists event horizon: m cannot reach hidden region observer in hidden region cannot communicate with m m passes through vacuum, can use part of acceleration energy to excite vacuum fluctuations on-shell

 e^+ absorbed in detector on m

 e^- disappears beyond event horizon

"quantum entanglement"

~ Einstein-Podolsky-Rosen effect

observer on m as well as observer in hidden region have incomplete information: \Rightarrow each sees thermal radiation

observer on m:

physical vacuum = thermal medium of temperature T_U

$$rac{ ext{Unruh temperature}}{ ext{}T_U = rac{\hbar a}{2\pi c}$$
 again relativistic quantum effect

for observer in hidden region, <u>Unruh radiation</u>:

passage of $m \Rightarrow$ thermal radiation of temperature T_U Black hole event horizon R = 2GM (Schwarzschild radius)

$$F=ma=Grac{Mm}{R^2} \; \Rightarrow \; a=rac{GM}{R^2}=rac{1}{4GM} \
ightarrow \; T_U=rac{a}{2\pi}=rac{1}{8\pi GM}=T_{BH}$$

recover Hawking result

for observer in hidden region, <u>Unruh radiation</u>:

passage of $m \Rightarrow$ thermal radiation of temperature T_U Black hole event horizon R = 2GM (Schwarzschild radius)

recover Hawking result

In general:

[T. D. Lee 1986, Parikh & Wilczek 2000]

event horizon \sim information transfer forbidden \Rightarrow quantum tunnelling \sim thermal radiation

Relation to QCD?

Gravitation:

matter and light are confined to restricted region of space ("black hole")

QCD:

coloured quarks and gluons are confined to restricted region of space, colourless from the outside ("colour singlet")

Hadrons as black hole analogue in strong interaction physics?

[Recami & Castorina 1976, Salam & Strathdee 1978]

Schwarzschild radius of nucleon

$$R_q^n = 2 G m \simeq 1.3 \times 10^{-38} \text{ GeV}^{-1} \simeq 3 \times 10^{-39} \text{ fm}$$

Volume of nucleon too big by 10¹⁰⁰ to be a gravitational black hole

But gravitation \rightarrow strong interaction: $Gm^2 \rightarrow \alpha_s$, hence

$$R_s^n = rac{2lpha_s}{m} \simeq 1 ext{ fm}$$

if $\alpha_s \simeq 2-3$.

Hadron radius \sim "strong" Schwarzschild radius

Hadrons \sim "strong" black holes coloured inside, colourless outside

But gravitation \rightarrow strong interaction: $Gm^2 \rightarrow \alpha_s$, hence

$$R_s^n = \frac{2\alpha_s}{m} \simeq 1 \text{ fm}$$

if $\alpha_s \simeq 2-3$.

Hadron radius \sim "strong" Schwarzschild radius

Hadrons \sim "strong" black holes coloured inside, colourless outside

More generally:

consider interacting hadrons, multihadron production, in the framework of black hole physics concepts

Black hole: event horizon for all interactions

Strong black hole: event horizon for strong interactions

3. Pair Production and String Breaking

Basic process: two-jet e^+e^- annihilation, cms energy \sqrt{s} :

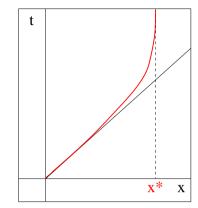
$$e^+e^- \to \gamma * \to q\bar{q} \to \text{ hadrons}$$

 $q\bar{q}$ separate subject to constant confining force $F = \sigma$

initial quark velocity
$$v_0 = rac{p}{\sqrt{p^2 + m^2}} \;, \;\; p \simeq \sqrt{s}/2$$

Solve $ma = \sigma$ (hyperbolic motion): [Hosoya 1979, Horibe 1979]

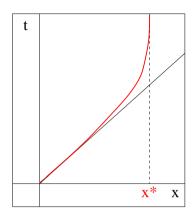
$$ilde{x} = [1 - \sqrt{1 - v_0 ilde{t} + ilde{t}^2}] \;,\; ilde{x} = x/x_0 \;,\; ilde{t} = t/x_0$$


$$x_0 = rac{m}{\sigma} rac{1}{\sqrt{1-v_0^2}} = rac{m}{\sigma} \; \gamma = rac{1}{a} \; \gamma$$

classical turning point $v(t^*) = 0$ at

$$x^*=x(t^*)=rac{m}{\sigma}\,\gamma\,[1-\sqrt{1-(v_0/2)^2}]\simeqrac{\sqrt{s}}{2\sigma}$$

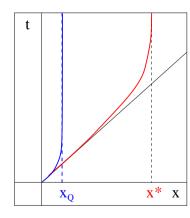
 $q\bar{q}$ can separate arbitrarily far if \sqrt{s} is large enough


What's wrong?

classical turning point $v(t^*) = 0$ at

$$x^*=x(t^*)=rac{m}{\sigma}\,\gamma\,[1-\sqrt{1-(v_0/2)^2}]\simeqrac{\sqrt{s}}{2\sigma}$$

 $q\bar{q}$ can separate arbitrarily far if \sqrt{s} is large enough

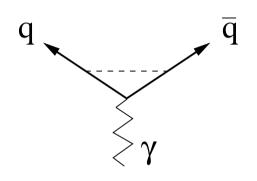


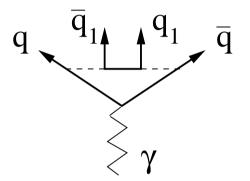
What's wrong?

classical event horizon

Strong field \Rightarrow vacuum unstable against pair production [Schwinger 1951]

when $\sigma x > \sigma x_Q \equiv 2m$ string connecting $q\bar{q}$ breaks


Result:


quantum event horizon

Hadron production in e^+e^- annihilation:

"inside-outside cascade"

[Bjorken 1976]

 $q\bar{q}$ flux tube has thickness

$$r_T \simeq \sqrt{rac{2}{\pi \sigma}}$$

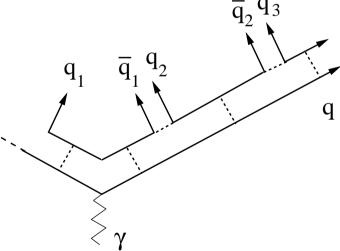
$$q_1ar{q}_1$$
 at rest in cms, but $k_T\simeq rac{1}{r_T}\simeq \sqrt{rac{\pi\sigma}{2}}$

 $qar{q}$ separation at $q_1ar{q}_1$ production $oldsymbol{\sigma} x(qar{q}) = 2\sqrt{m^2 + k_T^2}$

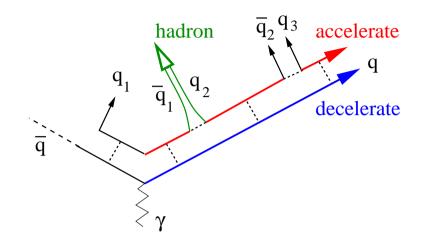
$$\sigma x(qar q)=2\sqrt{m^2+k_T^2}$$

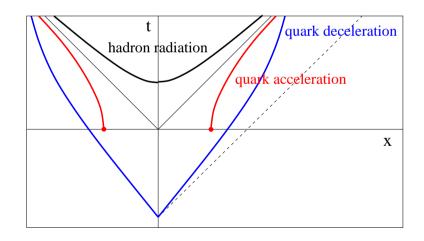
 q_1 screens \bar{q} from q, hence string breaking at

$$x_q \simeq rac{2}{\sigma} \sqrt{m^2 + (\pi \sigma/2)} \simeq \sqrt{2\pi/\sigma} \simeq 1 \,\, {
m fm}$$


new flux tubes $q\bar{q}_1$ and $\bar{q}q_1$ stretch $q_1\bar{q}_1$ to form new pair $q_2\bar{q}_2$

$$\sigma x(q_1ar{q}_1)=2\sqrt{m^2+k_T^2}$$


equivalent:


 \bar{q}_1 reaches $q_1\bar{q}_1$ event horizon, tunnels to become \bar{q}_2

emission of hadron \bar{q}_1q_2 as Hawking radiation

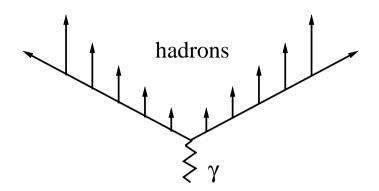
self-similar pattern:

temperature of Hawking radiation: what acceleration?

$$(ar{q}_1
ightarrow ar{q}_2
ightarrow ar{q}_3
ightarrow ...)$$

$$a=F/m \; \Rightarrow \; a_q=rac{\sigma}{w_q}=rac{\sigma}{\sqrt{m_q^2+k_q^2}}$$

string breaking & thickness determine $k_q \simeq \sqrt{\pi\sigma/2}$


$$\Rightarrow \quad a_q \simeq rac{\sigma}{\sqrt{m_q^2 + (\sigma/2\pi)}}$$

for light quarks, $m_q \ll \sqrt{\sigma} \simeq 420$ MeV, hence

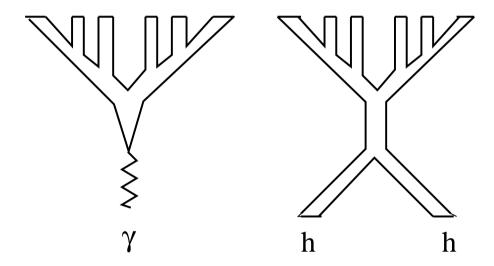
$$T=rac{a}{2\pi}\simeq \sqrt{rac{\sigma}{2\pi}}\simeq 170\,\,{
m MeV}$$

temperature of hadronic Hawking-Unruh radiation in QCD

hadronization pattern: hadron multiplicity?

thickness of classical "overstretched" string:

$$R_T^2 = rac{2}{\pi\sigma} \sum\limits_{k=0}^K rac{1}{2k+1} \simeq rac{2}{\pi\sigma} \ln 2K \simeq rac{2}{\pi\sigma} \ln \sqrt{s}$$


quantum breaking at $x_q \sim r_T$, hence hadron multiplicity

$$u(s) \simeq rac{R_T^2}{r_T^2} \simeq \ln \sqrt{s}$$

NB: parton evolution (minijets), multiple jets lead to stronger increase

generalize:

 e^+e^- annihilation hadron-hadron collision "black hole" creation "black hole" fusion

both \rightarrow self-similar cascades

Heavy ion collisions: interference between emitted hadrons

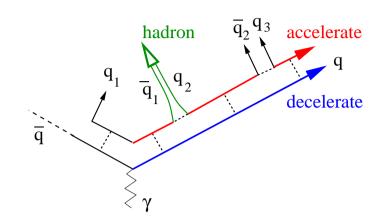
4. Strangeness Production

[Becattini, Castorina, Manninen, HS 2008]

Unruh temperature ~ 1 / mass of secondary; e.g. : spontaneous production in strong field \mathcal{E} (Schwinger)

$$P(m.\mathcal{E}) \sim \exp\{-\pi m^2/e\mathcal{E}\}, \;\;\; a = rac{e\mathcal{E}}{m}$$

so that


$$P(m,\mathcal{E}) \sim \exp\{-m/T_U\}, \;\; T_U = rac{a_e}{2\pi} = rac{e\mathcal{E}}{2\pi m}.$$

we had for finite quark mass m_q

$$a_q \simeq rac{\sigma}{\sqrt{m_q^2 + (\sigma/2\pi)}}$$

produced meson consists of quarks \bar{q}_1 and q_2

meson containing two different quark masses will have average acceleration

$$ar{a}_{12} = rac{w_1 a_1 + w_2 a_2}{w_1 + w_2} = rac{2\sigma}{w_1 + w_2}; \quad w_i \simeq \sqrt{m_i^2 + (\sigma/2\pi)}$$

leading to

$$T(12)\simeq rac{a_{12}}{2\pi}$$

easily extended to baryons; result: five temperatures

$$T(00) = T(000); \ T(s0); \ T(ss) = T(sss); \ T(00s); \ T(0ss)$$

fully determined by σ and m_s

for $\sigma \simeq 0.17~{\rm GeV^2}$ and $m_s \simeq 0.08~{\rm GeV}$ obtain temperatures:

does this work? analyse all existing high energy e^+e^- data

T	[GeV]	
T(00)	0.164	
T(0s)	0.156	
T(ss)	0.148	
T(000)	0.164	
T(00s)	0.158	
T(0ss)	0.153	
T(sss)	0.148	

hadron production data in e^+e^- annhilation exist at

$$\sqrt{s} = 14, \ 22, \ 29, \ 35, \ 43, 91, 180 \ \mathrm{GeV}$$

(PETRA, PEP, LEP)

example:

long-lived hadrons produced at LEP for $\sqrt{s} = 91.25~\mathrm{GeV}$

fit data in terms of σ and m_s

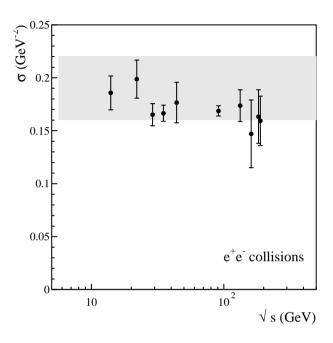
result:

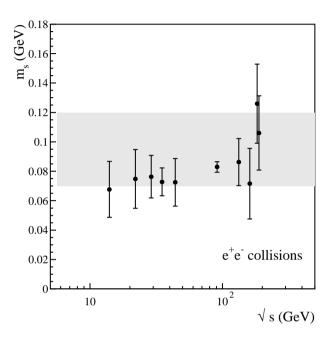
$$\sigma = 0.169 \pm 0.002 \; \mathrm{GeV^2}$$

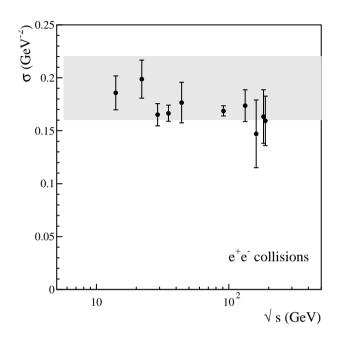
$$m_s=0.083~{
m GeV}$$

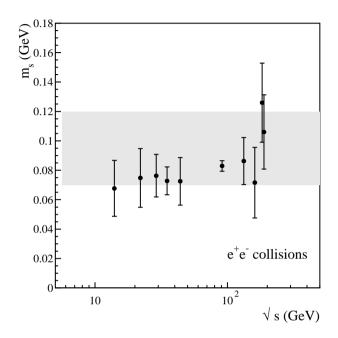
$$\chi^2/\mathrm{dof} = 22/12$$

standard values:


$$\sigma = 0.195 \pm 0.030 \; \mathrm{GeV^2}$$


$$m_s = 0.095 \pm 0.025 \; \mathrm{GeV}$$


$$e^+e^ \sqrt{s} = 91.2~GeV$$


	T			
species	measured			fit
π^+	8.50	\pm	0.10	8.44
π^0	9.61	\pm	0.29	9.81
K^+	1.127	\pm	0.026	1.055
K^0	1.038	\pm	0.001	1.015
η	1.059	\pm	0.996	0.910
ω	1.024	\pm	0.059	0.996
p	0.519	\pm	0.018	0.570
η'	0.166	\pm	0.047	0.108
ϕ	0.0977	\pm	0.0058	0.1164
Λ	0.1943	\pm	0.0038	0.1846
Σ^+	0.0535	\pm	0.0052	0.0428
Σ^0	0.0389	\pm	0.0041	0.0435
Σ^-	0.0410	\pm	0.0037	0.0390
Ξ^-	0.01319	\pm	0.0005	0.0126
Ω	0.00062	\pm	0.0001	0.0009

perform analyses for all data

Conclude

thermal hadron production in e^+e^- annihilation, includ'g strangeness suppression, is reproduced parameter-free as Hawking-Unruh radiation of QCD

 $\Rightarrow pp/p\bar{p}$ (straight-forward); heavy ions (interesting)

5. Kinetic vs. Stochastic Thermalization

Kinetic thermalization:

- many constituents
- sufficiently large interaction cross sections
- sufficiently long time

thermal hadron production in e^+e^- , $pp/p\bar{p}$?

Hagedorn: the emitted hadrons are "born into equilibrium"

Hawking radiation:

- ullet final state produced at random from the set of all states corresponding to temperature T_H determined by confining field
- this set of all final states is same as that produced by kinetic thermalization
- measurements cannot tell if the equilibrium was reached by thermal evolution or by throwing dice:

 \Rightarrow Ergodic Equivalence Principle \Leftarrow

gravitation \sim acceleration

kinetic \sim stochastic

• The physical vacuum is an event horizon for coloured quarks and gluons; thermal hadrons are Hawking-Unruh radiation produced by quark tunnelling through event horizon.

- The physical vacuum is an event horizon for coloured quarks and gluons; thermal hadrons are Hawking-Unruh radiation produced by quark tunnelling through event horizon.
- The corresponding hadronization temperature T_H is determined by quark acceleration and deceleration in the colour field at the (quantum) horizon.

- The physical vacuum is an event horizon for coloured quarks and gluons; thermal hadrons are Hawking-Unruh radiation produced by quark tunnelling through event horizon.
- The corresponding hadronization temperature T_H is determined by quark acceleration and deceleration in the colour field at the (quantum) horizon.
- Strangeness suppression is provided by the modification of the Unruh temperature due to the strange quark mass.

- The physical vacuum is an event horizon for coloured quarks and gluons; thermal hadrons are Hawking-Unruh radiation produced by quark tunnelling through event horizon.
- The corresponding hadronization temperature T_H is determined by quark acceleration and deceleration in the colour field at the (quantum) horizon.
- Strangeness suppression is provided by the modification of the Unruh temperature due to the strange quark mass.
- Given string tension σ and strange quark mass m_s , the resulting scenario provides a parameter-free description of thermal hadron production in elementary high energy interactions.

God does play dice, but He sometimes throws them where they can't be seen.

Stephen Hawking