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Objective

Investigate the possibilities of deriving integral or integro-differential
equations for gauge invariant Green’s functions. Those involve path-
ordered gluon field phase factors. Here, we concentrate on two-point
quark Green’s functions, in which the path-ordered phase factor is
made of a single straight line or more generally of a skew-polygonal
line.

The starting point is a particular representation for the quark
propagator in the presence of an external gluon field, where it is
expressed as a series of terms involving path-ordered phase factors
along successive straight lines. Then the corresponding quantized
Green’s function becomes expressed in terms of Wilson loops having
skew-polygonal contours.
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Definitions and conventions

Path-ordered gluon field phase factor along a line Cyx joining a point x to a point

y, with an orientation defined from x to y:

U(Cyx; y, x) ≡ U(y, x) = Pe
−ig

Z y

x

dz
µ
Aµ(z)

.

Parametrizing the line C with a parameter λ, 0 ≤ λ ≤ 1, such that x(0) = x and

x(1) = y, a variation of C induces the following variation of U (Mandelstam, 1968):

δU(1, 0) = −igδx
α
(1)Aα(1)U(1, 0) + igU(1, 0)Aα(0)δx

α
(0)

+ig

Z 1

0

dλU(1, λ)x′β(λ)Fβα(λ)δxα(λ)U(λ, 0),

where x′ = ∂x
∂λ

and Fµν = ∂µAν − ∂νAµ + ig[Aµ, Aν].

For paths defined along rigid lines, the variations inside the integral are related,

with appropriate weight factors, to those of the end points.
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Considering now a rigid straight line between x and y, a derivation at
the end points yields:

∂U(y, x)

∂yα
= −igAα(y)U(y, x)+ig(y−x)β

∫ 1

0

dλλU(1, λ)Fβα(λ)U(λ, 0),

∂U(y, x)

∂xα
= +igU(y, x)Aα(x)+ig(y−x)

β

∫ 1

0

dλ (1−λ)U(1, λ)Fβα(λ)U(λ, 0).

Conventions to represent the contributions of the integrals:

δ̄U(y, x)

δ̄yα+
≡ ig(y − x)β

∫ 1

0

dλλU(1, λ)Fβα(λ)U(λ, 0),

δ̄U(y, x)

δ̄xα−
≡ ig(y − x)β

∫ 1

0

dλ (1 − λ)U(1, λ)Fβα(λ)U(λ, 0).
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Wilson loop

Φ(C) =
1

Nc
trPe

−ig

∮
C

dxµAµ(x)
.

Vacuum expectation value:

W (C) = 〈Φ(C)〉.

Functional representation:

W (C) = eF (C).

In perturbation theory, F (C) is given by the sum of all connected diagrams, the

connection being defined with respect to the contour C (Dotsenko and Vergeles,

1980). For large contours and large Nc, F (C) is proportional to the minimal surface

with contour C (Makeenko and Migdal, 1980).
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If the contour C is a skew-polygon Cn with n sides and n successive
marked points x1, x2, . . ., xn at the cusps, then we write:

W (xn, xn−1, . . . , x1) = Wn = eFn(xn, xn−1, . . . , x1) = eFn.

x2

x3
x4

x5

W5

W5(x5, x4, . . . , x1) = eF5(x5, . . . , x1)

x1
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Two-point Green’s functions

The gauge invariant two-point quark Green’s function is defined as

Sαβ(x, x
′;Cx′x) = −

1

Nc
〈ψβ(x

′)U(Cx′x;x
′, x)ψα(x)〉.

For skew-polygonal lines with n sides and n − 1 junction points y1, y2,
. . .,yn−1 between the segments, we define:

S(n)(x, x
′; yn−1, . . . , y1) = −

1

Nc

〈ψ(x′)U(x′
, yn−1)U(yn−1, yn−2) . . . U(y1, x)ψ(x)〉.

For one straight line, one has:

S(1)(x, x
′) ≡ S(x, x′) = −

1

Nc
〈ψ(x′)U(x′, x)ψ(x)〉.
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Pictorially:

S(x, x′) ≡ S(1)(x, x
′) = − 1

Nc
< ψ(x′)U(x′, x)ψ(x) >

x x′

S(3)(x, x
′; y2, y1) = − 1

Nc
< ψ(x′)U(x′, y2)U(y2, y1)U(y1, x)ψ(x) >

x x′

y1

y2

8



Quark propagator in the external gluon field

A two-step quantization. One first integrates with respect to the quark
fields. This produces in various terms the quark propagator in the
presence of the gluon field. Then one integrates with respect to the
gluon field through Wilson loops.

To make Wilson loops appear, one needs an appropriate
representation for the quark propagator in extenal field. We use the
following representation which involves phase factors along straight
lines together with the full quark Green’s function S(1) ≡ S (F. Jugeau
and H.S., 2003). Generalization of a representation introduced by
Eichten and Feinberg, 1981, for heavy quarks.

9



S(x, x
′
;A) = S(x, x

′
)U(x, x

′
)+

„

S(x, y)
δ̄U(x, y)

δ̄yα−
+
δ̄S(x, y)

δ̄yα+
U(x, y)

«

γ
α
S(y, x

′
;A).

Pictorially:

x x′

S(A)
x x′S

= + +

x x′ x x′

y y

U

+
+

This yields an expansion of S(A) in terms of the gauge invariant
Green’s function S and explicit phase factors along straight lines.

10



Functional relations for Green’s functions

Systematic use of the expansion of the quark propagator in external
field.

Consider the Green’s function S(n). Integrate with respect to the
quark fields:

S(n)(x, x
′
; yn−1, . . . , y1) =

1

Nc

〈U(x
′
, yn−1)U(yn−1, yn−2) · · ·U(y1, x)S(x, x

′
;A)〉.

Use of the expansion for S(A) gives:

S(n)(x, x
′
; yn−1, . . . , y1) = S(x, x

′
) e
Fn+1(x

′
, yn−1, . . . , y1, x)

+

„

δ̄S(x, yn)

δ̄yα+
n

+ S(x, yn)
δ̄

δ̄yα−n

«

γ
α
S(n+1)(yn, x

′; yn−1, . . . , y1, x).
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Graphical representation for n = 3:

+ +
= +

x′ x x′ x′x

S S

x′

x x

+

y2 y2

y3 y3

W4

S(3) S S(4) S(4)

y1 y1

y1 y1

y2 y2
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Equations of motion

(iγ.∂(x) −m)S(n)(x, x
′; yn−1, . . . , y1) = iδ4(x− x′)eFn(x, yn−1, . . . , y1)

+iγµ
δ̄S(n)(x, x

′; yn−1, . . . , y1)

δ̄xµ−
.

Graphical representation of this equation for n = 1 and n = 3:

x x′
(iγ.∂x −m)

(iγ.∂x −m)

+

+

=
x x′
×

x′x

×
=

W3

iδ4(x− x′) S(3)
x′x

S(3)

y1 y2 y1 y2 y1 y2

iδ4(x− x′)S S
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Integral equation

δ̄S/δ̄xµ− and δ̄S(n)/δ̄x
µ− can be expressed, with the aid of the

functional relations, in terms of Wilson loop derivatives and Green’s
functions. At the end, one obtains for δ̄S/δ̄xµ− a series expansion
in terms of the Green’s functions S(n), each term involving a kernel
expressed in terms of Wilson loop derivatives and Green’s function S
and its derivative.

δ̄S(x, x′)

δ̄xµ−
= K1µ−(x′, x)S(x, x′) +K2µ−(x′, x, y1)S(2)(y1, x

′;x)

+
∞∑
n=3

Knµ−(x′, x, y1, . . . , yn−1)S(n)(yn−1, x
′;x, y1, . . . , yn−2).

The kernel Kn contains globally n derivatives of Wilson loops and also
the Green’s function S and its derivative.
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Graphical representation up to third-order terms:

×

=

x x′
x x′
×

−
×

x′x

×

×

F4
+

×

S

S

×

S S

x′x
×

F4

x′x

S S

F4
+ ×+

 

×

×
!

××

x′

×

F4

x

S
S

y1 y2

F2

y1 y2 y1 y2 y1 y2

×
x x′ x x′

F3
×

×
S

S(2)

y1 y1

x′x
S(3)

y1 y2

x′x
S(3)

y1 y2
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At short-distances, governed by perturbation theory, each derivation
introduces a new power of the coupling constant and therefore the
dominant terms in the expansion are the lowest-order ones. At large-
distances, Wilson loops are saturated by the minimal surfaces having
as supports the contours. Here also, the dominant contributions come
from the lowest-order derivative terms. Therefore the expansion above
can be considered in general as a perturbative one.
Thus the dominant part of the kernel comes from the second-order
term (the first-order one being zero for symmetry reasons).

(iγ.∂(x) −m)S(x, x′) = iδ4(x− x′) + iγµ
δ̄S(x, x′)

δ̄xµ−
.

δ̄S(x, x′)

δ̄xµ−
≃ −

∫
d4y1

δ̄2F3(x
′, x, y1)

δ̄xµ−δ̄yα1+
1

eF3(x
′, x, y1) S(x, y1) γ

α1 S(y1, x
′).
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