Newly discovered exotic heavy hadrons

Fl. Stancu

University of Liège

HLPW Meeting

Spa, March 6-8, 2008

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Outline

Outline

1 New heavy hadrons since 2002

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

New heavy hadrons since 2002

Renaissance in heavy hadron spectroscopy

- Ordinary $Q\bar{q}$, $Q\bar{Q}$
- Ordinary qqQ, qQQ (q = u, d, s and Q = c, b)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• Exotics, not $Q\bar{q}$ or $Q\bar{Q}$

New heavy hadrons since 2002

ORDINARY HADRONS, expected

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- (2^1S_0) $\eta_c'(3638)$ $(c\bar{c})$ CLEO 2004
- (1^1P_1) $h_c(3524)$ $(c\bar{c})$ **CLEO 2005**
- $B_c(6287)$ $(c\bar{b})$ CDF 2005
- $\Xi_{cc}^+(3520)$ (ccd) SELEX 2002,2005
- $\Xi_b(5793)$, $\Sigma_b^{\pm}(5811)$, $\Sigma_b^{*\pm}(5833)$ (qqb) CDF 2007

EXOTIC RESONANCES

- Open charm: $D_s(2317)$, $D_s(2460)$, $D_s(2690)$, $D_s(2860)$
- Hidden charm: *X*(3872), *X*(3940), *Y*(3940), *Z*(3930), *X*(4160), *Y*(4260), *Z*[±](4433), *Y*(4660)

N.B. X Y Z have different dominant decay channels

 $X(3940) \rightarrow D \overline{D*}, C=+, 0^{-+} ???, \eta_c(3S)$ expected above 4 GeV $Z(3930) \rightarrow D \overline{D} = 2^3 P_2(\chi'_{c2}) ???$

 $Y(3940) \rightarrow \omega \ J/\Psi$ status not clear, BaBar observes M = 3914 MeV, different from Belle, $2^3 P_1(\chi'_{c1})$???

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

New heavy hadrons since 2002

Belle

CDF

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

EXPERIMENTAL STATUS of X(3872)

Observed by Belle (2003), confirmed by CDF II, DO, BaBar Belle

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $e^+ - e^- \rightarrow B^{\pm} \rightarrow K^{\pm} + X \rightarrow K^{\pm} + J/\Psi + \pi^+ + \pi^-$

Close to threshold $D^0 + \overline{D}^{*0} = 3871.2 \text{ MeV}$

New heavy hadrons since 2002

Parameters

Resonance	Mass	Width	J^{PC}	Decay modes
	(MeV)	(MeV)		
X(3872)	3872 ± 0.6	< 2.3	1++	$\pi^+\pi^- J/\Psi, \gamma J/\Psi$
X(3940)	3942 ± 9	37 ± 17	J^{P+}	$D\bar{D}^*$
Y(3940)	3943 ± 17	$\frac{87}{\pm}22\pm26$	J^{P+}	$\omega J/\Psi$
Z(3930)	3929 ± 5	$\textcolor{red}{\textbf{29}} \pm \textbf{10} \pm \textbf{2}$	2++	$Dar{D}$
X(4160)	4156 ± 29	139^{+113}_{-65}	J^{P+}	$D^*\bar{D}^*$
Y(4260)	$4264{\pm}~12$	<mark>83</mark> ± 22	1	$\pi^+\pi^- J/\Psi$
Z [±] (4430)	4433 ± 5	45^{+35}_{-18}	?	$\pi^{\pm}\Psi'$
Y(4660)	4664 ± 12	48 ± 15	1	$\pi^+\pi^-\Psi'$

<□ > < @ > < E > < E > E のQ @

Selected theoretical approaches for exotics

Options

- Constituent quark model $c\bar{c}$
- $D\overline{D}^*$ molecule $(c\overline{q}) (\overline{c}q)$
- Tetraquarks $(c\bar{c})(q\bar{q})$
- Hybrid, excitation of the flux tube

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Molecular picture

- de Rujula, Georgi, Glashow (1977) $\Psi(4040)$ as $D^*\overline{D}^*$ molecule
- Tornqvist (1991) deuteron-like two mesons, $D\overline{D}^*$, $D^*\overline{D}^*$, interacting by π exchange (Yukawa)

- Y.-R. Liu et al, hep-ph/0801.3540, π and σ exchange \rightarrow no bound state except for $B\overline{B}^*$

Tetraquarks

- Initiated in 1977 by Jaffe, tetraquarks, MIT bag model
- Potential models, Isgur, Weinstein 1983, light scalar mesons
- Role of heavy quarks, Zouzou et al. 1986
- Role of hidden colour states, DMB & FS, PRD49:4665 (1994)
- Stability due to heavy flavours, DMB & FS, PRD57:6778 (1998)

- Role of confinement, J. Vijande et al. PRD76:114013 (2007)

Newly discovered exotic heavy hadrons

Selected theoretical approaches for exotics

2q - 2q system

▲□▶ ▲□▶ ★ □▶ ★ □▶ = □ ● ● ●

The meson-meson channel

-diquark picture $(cq)(\bar{c}\bar{q})$ -only $\bar{3}_{12}3_{34}$ basis vector \rightarrow twice less states in the spectrum -X(3872) is fitted

A simplified OGE model H. Hogaasen, J.-M. Richard, P.Sorba, PRD73,054013 (2006)

$$\mathcal{M} = \sum_{i} m_i + \langle H_{cm} \rangle$$

$$H_{cm} = -\sum_{i,j} C_{ij} \, \tilde{\lambda}_i \cdot \tilde{\lambda}_j \, \boldsymbol{\sigma}_i . \boldsymbol{\sigma}_j$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

PARAMETERS N.B. $c_{12} = c_{34}$, $c_{14} = c_{23}$ m_q = 450 MeV, m_c = 1550 MeV $c_{12} = c_{qc} = 5.0$ MeV $c_{23} = c_{q\bar{c}} = 6.5$ MeV $c_{13} = c_{c\bar{c}} = 4.0$ MeV $c_{24} = c_{a\bar{a}} = 20.0$ MeV

molecular limit $c_{12} = c_{14} = \mathbf{0}$

$$\langle H_{cm} \rangle$$
 for $J^{PC} = 1^{++}$

Basis $|1\rangle = |1_{13}1_{24}(V_{13}V_{24})_1\rangle; |2\rangle = |8_{13}8_{24}(V_{13}V_{24})_1\rangle$

$$\begin{bmatrix} \frac{16}{3}(C_{13}+C_{24}) & \frac{8\sqrt{2}}{3}(C_{12}-C_{23}) \\ \frac{8\sqrt{2}}{3}(C_{12}-C_{23}) & -\frac{2}{3}(4C_{12}+14C_{23}+C_{13}+C_{24}) \end{bmatrix}$$

lowest state components (0.0259, 0.9996) \rightarrow very small J/Ψ + vector meson component

(日) (日) (日) (日) (日) (日) (日) (日)

SPECTRUM of $c\bar{c}q\bar{q}$ $\mathcal{M} = \sum_{i} m_{i} - \langle \sum_{i,j} C_{ij} \,\tilde{\lambda}_{i} \cdot \tilde{\lambda}_{j} \,\boldsymbol{\sigma}_{i} \boldsymbol{\sigma}_{j} \rangle$ _____ 4177 4128 4128 _____ 4096 _____ 4057 _____ 4033 _____ 4025 _____ 3960 _____ X(3940) 3910 X(3872) _____ 3827 ______ 3695 _____ 3591 0++ 1++ 1+-2++

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへぐ

More refinements, Maiani et al. PRL99:182003(2007)

$$\begin{split} X_u &= [cu][\bar{c}\bar{u}], \ X_d = [cd][\bar{c}\bar{d}], \quad \text{neutral} \\ X^+ &= [cu][\bar{c}\bar{d}], \ X^- = [cd][\bar{c}\bar{u}], \quad \text{charged} \end{split}$$

$$X_d = X(3872)$$
 decays into $J/\Psi \pi^+ \pi^-$
 $X_u = X(3876)$ decays into $D^0 \overline{D}^0 \pi^0$

Branching ratios with Belle data + weak decay

$$\mathcal{B}(X_d \to J/\Psi \pi^+ \pi^-) \approx \frac{1}{20} \mathcal{B}(X_u \to D^0 \bar{D}^0 \pi^0)$$

	X(3872)			
	$3872.0 \pm 0.6 \pm 0.5$ (Belle-2003)			
	$3871.3 \pm 0.7 \pm 0.4$ (CDF-2004)			
Mass	$3871.8 \pm 3.1 \pm 3.0$ (D0-2003)			
(MeV)	3873.4 ± 1.4 (Babar-2005)			
	$3875.4 \pm 0.7^{+1.2}_{-2.0}$ (Belle-2006)			
	$3875.6 \pm 0.7^{+1.4}_{-1.5}$ (Babar-2007)			
Width	< 2.3 MeV (Belle-2003)			
J^{PC}	$1^{++}/2^{-+}$ (angular,angular-CDF)			
	$\frac{BR[X(3872) \rightarrow \gamma J/\psi]}{BR[X(3872) \rightarrow \pi^{\pm}\pi^{-} I/\psi]} = 0.14 \pm 0.05 \text{ (Belle-2005)}$			
Branching fractions	$\frac{BR[X(3872) \to \gamma J/\psi]}{BR[X(3872) \to \gamma J/\psi]} = 0.25 \text{ (Babar-2006)}$			
	$\frac{BR[X(3875) \to D^0 \bar{D}^0 \pi^0]}{BR[X(3875) \to \pi^+ \pi^- J/\psi]} = 9.4^{+3.6}_{-4.3} \text{ (Belle 2006) ???}$			

<ロ> <回> <回> <回> <三> <三> <三> <回> <回> <回> <回> <回> <回> <回> <回> <回</p>

The resonance Z⁺(4430), I = 1Exotique: non-zero electric charge \rightarrow not $c\bar{c}$ or $c\bar{c}g$ observed in $\Psi(2S)\pi^+$ channel.

Options

- $D^*(2010) \overline{D}_1(2420)$ molecule (S.L.Zhu et al.,2007)
- diquark-antidiquark $[cu][\bar{c}\bar{u}]$ (Maiani et al.,2007)
- tetraquark (Liu, Zhao, Close, hep-ph/0802.2648)
- S-wave threshold effect (Rosner, 2007)

Molecular option: Relative S-wave gives $J^P = 0^-$ (lowest state) Decay channel: $D^*D^* \pi$

Tetraquark option $cu\bar{c}d$: Mass estimate

Relative S-wave $\rightarrow \ell = 0 \rightarrow \text{Parity} = + 1$

Decay to $\Psi(2S)\pi^+ \to S = 1 \to$ Charge conjugation for neutral partner $C = (-)^{\ell+S} = + 1 \to J^P = 1^{+-}$ (lowest state) Decay channels of neutral partner $D\overline{D}^*, J/\Psi\pi$, etc.

Radial excitation: $M(\Psi'(3685)) - M(J/\Psi(3097)) \approx 600$ MeV The OGE model for $J^{PC} = 1^{+-}$ was 3695 MeV. The total: ≈ 4300 Mev is plausible

Microscopic calculations are required

- Summary

Summary

SUMMARY

- X(3872), Z⁺(4430) good candidates for exotics
- Richer data needed, quantum numbers, charged X, etc.
- More sophisticated calculations needed
- Intensive back-and-forth between theory and experiment
- New charmonium states to be discovered, also $bar{b}$ and $bar{c}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ