Defining jets at the dawn of the LHC

Grégory Soyez

CERN

In collaboration with Gavin Salam, Matteo Cacciari and Juan Rojo

CERN — October 9 2009

Plan

- Jet algorithms and jet definitions
 - basic ideas: why jets? recombinations and cones
 - failures of the 20th-century cone algorithms
 - new algorithms without the failures

- More advanced topics: how to better use the tools we have?
 - jet areas: tool for pileup subtraction
 - new generation of algorithms
 - optimal choice (for kinematic reconstructions)

Unavoidable theory

QCD probability for gluon emission (angle θ and \perp -mom. k_t):

$$dP \propto \alpha_s \, \frac{d\theta}{\theta} \, \frac{dk_t}{k_t}$$

Two divergences:

Divergences cancelled by virtual corrections

Motivation: why jets

Collinear divergence ⇒ QCD produces "jetty" showers

Example: LEP (OPAL) events

"Jets" \equiv bunch of collimated particles \cong hard partons

Motivation: why jets

Collinear divergence ⇒ QCD produces "jetty" showers

"Jets" \equiv bunch of collimated particles \cong hard partons

BUT

- a "parton" is an ambiguous concept (NLO)
- "collinear" has some arbitraryness

Motivation: why jets

Collinear divergence ⇒ QCD produces "jetty" showers

"Jets" \equiv bunch of collimated particles \cong hard partons

In practice: use of a jet definition

jet
particles $\{p_i\}$ definition

Jet algorithm: the recipe (insufficient!)
Jet definition: algorithm + the parameters

Recombination:

- k_t algorithm
- Cambridge/Aachen alg.

- CDF JetClu
- CDF MidPoint
- D0 (run II) Cone
- PxCone
- ATLAS Cone
- CMS Iterative Cone
- PyCell/CellJet
- GetJet

Recombination:

- k_t algorithm
- Cambridge/Aachen alg.

Idea: undo the showering

Successively

- find the closest pair of particles
- recombine them

Distance:

$$k_t$$
:

$$d_{i,j} = \min(k_{t,i}^2, k_{t,j}^2) (\Delta \phi_{i,j}^2 + \Delta y_{i,j}^2)$$

Cam/Aachen:

$$d_{i,j} = \Delta \phi_{i,j}^2 + \Delta y_{i,j}^2$$

stop at a distance R

<u>Idea</u>: dominant flow of energy

Stable cone (radius R):

sum of particles in the cone points towards the cone centre

All these are iterative cones:

- start from a seed
- iterate until stable

seeds = {particles, midpoints}

Jet ≡ stable cone modulo overlapping

- CDF JetClu
- CDF MidPoint
- D0 (run II) Cone
- PxCone
- ATLAS Cone
- CMS Iterative Cone
- PyCell/CellJet
- GetJet

Cone with split-merge

Split/merge if the overlap is smaller/larger than a threshold f

- CDF JetClu
- CDF MidPoint
- D0 (run II) Cone
- PxCone
- ATLAS Cone
- CMS Iterative Cone
- PyCell/CellJet
- GetJet

Cone with progressive removal

Successively

- iterate from hardest particle
- call that a jet (remove particles)

Basic property: hard circular jets

- CDF JetClu
- CDF MidPoint
- D0 (run II) Cone
- PxCone
- ATLAS Cone
- CMS Iterative Cone
- PyCell/CellJet
- GetJet

Recombination:

- k_t algorithm
- Cambridge/Aachen alg.

✓ perturbative behaviour

Cone:

- CDF JetClu
- CDF MidPoint
- D0 (run II) Cone
- PxCone
- ATLAS Cone
- CMS Iterative Cone
- PyCell/CellJet
- GetJet

✓ UE sensitivity

21st century: how does that picture change?

Ingredient: QCD soft and collinear divergencies

 \bullet ∞ (from soft gluons) cancel (inclusive x-section)

Ingredient: QCD soft and collinear divergencies

- Consider an extra (NLO) soft gluon
- Assume LO gives 2 jets \Rightarrow NLO(virt) gives 2 jets

Ingredient: QCD soft and collinear divergencies

- Consider an extra (NLO) soft gluon
- Assume LO gives 2 jets \Rightarrow NLO(virt) gives 2 jets
- NLO(real) gives 2 jets $\Rightarrow \infty$ cancel \Rightarrow finite jet cross-section

Ingredient: QCD soft and collinear divergencies

- Consider an extra (NLO) soft gluon
- Assume LO gives 2 jets \Rightarrow NLO(virt) gives 2 jets
- NLO(real) gives 2 jets $\Rightarrow \infty$ cancel \Rightarrow finite jet cross-section NLO(real) gives 1 jets $\Rightarrow \infty$ do not cancel \Rightarrow infinite jet x-section

Ingredient: QCD soft and collinear divergencies

For pQCD to make sense, the (hard) jets should not change when

- one has a soft emission *i.e.* adds a very soft gluon
- one has a collinear splitting i.e. replaces one parton by two at the same place (η, ϕ)

[SNOWMASS Accords, Fermilab, 1990]

Stable cones found

A soft gluon changed the number of jets

⇒ IR unsafety of JetClu and the ATLAS Cone

A soft gluon changed the number of jets

⇒ IR unsafety of JetClu and the ATLAS Cone

Fixed by MidPoint

[Blazey et al., 00]

Stable cones found

A soft gluon changed the number of jets

 \Rightarrow IR unsafety of MidPoint (1 order in α_s later than JetClu)

Solution: be sure to find all stable cones

SISCone: Seedless Infrared-Safe Cone algorithm

http://projects.hepforge.org/siscone

[G.Salam, G.S., 07]

Idea: enumerate enclosures by enumerating pairs of particles

Collinear (un)safety? the CMS iterative cone

Collinear (un)safety? the CMS iterative cone

A colinear splitting changed the number of jets

⇒ Collinear unsafety of the CMS iterative cone

Anti- k_t

Come back to recombination-type algorithms:

$$d_{ij} = \min(k_{t,i}^{2p}, k_{t,j}^{2p}) \left(\Delta \phi_{ij}^2 + \Delta \eta_{ij}^2\right)$$

- p=1: k_t algorithm
- p = 0: Aachen/Cambridge algorithm

Come back to recombination-type algorithms:

$$d_{ij} = \min(k_{t,i}^{2p}, k_{t,j}^{2p}) \left(\Delta \phi_{ij}^2 + \Delta \eta_{ij}^2\right)$$

- p=1: k_t algorithm
- p = 0: Aachen/Cambridge algorithm
- p = -1: anti- k_t algorithm [M.Cacciari, G.Salam, G.S., 08]

Why should that be related to the iterative cone?!?

- "large $k_t \Rightarrow$ small distance"

 i.e. hard partons "eat" everything up to a distance Ri.e. circular/regular jets, jet borders unmodified by soft radiation
- infrared and collinear safe

anti- k_t adopted as default by ATLAS and CMS

anti- k_t adopted as default by ATLAS and CMS

Take e.g. the MidPoint cone

2 particles 3 particles 4 particles 4 particles 4 particles
$$\alpha_s^2 \times \ldots + \alpha_s^3 \times \ldots + \alpha_s^4 \times \ldots + \alpha_s^5 \times \ldots + \ldots$$

QCD expansion (one α_s can be replaced by α_{EW})

Take e.g. the MidPoint cone

2 particles 3 particles 4 particles 4 particles 4 particles + 1 soft
$$\overbrace{\alpha_s^2 \times \ldots}^2 + \overbrace{\alpha_s^3 \times \ldots}^3 + \overbrace{\alpha_s^4 \times \ldots}^4 + \overbrace{\alpha_s^5 \times \log(p_t/\Lambda_{\rm QCD}) \ldots}^5 + \ldots$$

- QCD expansion (one α_s can be replaced by $\alpha_{\rm EW}$)
- ullet IRC unsafety (regulated at the hadronic scale $\sim \Lambda_{
 m QCD}$)

Take e.g. the MidPoint cone

2 particles 3 particles 4 particles 4 particles 4 particles + 1 soft
$$\overbrace{\alpha_s^2 \times \ldots}^2 + \overbrace{\alpha_s^3 \times \ldots}^3 + \underbrace{\alpha_s^4 \times \ldots}^4 + \underbrace{\alpha_s^5 \times \log(p_t/\Lambda_{\rm QCD}) \ldots}_{\rm cannot \ be \ trusted} + \ldots$$

- QCD expansion (one α_s can be replaced by α_{EW})
- IRC unsafety (regulated at the hadronic scale $\sim \Lambda_{\rm QCD}$)
- $\alpha_s \log(p_t/\Lambda_{\rm QCD}) \sim 1$
- ullet last meaningful order = $lpha_{f s}^{f 3}$ or $lpha_{
 m EW}lpha_{f s}^{f 2}$

Take e.g. the MidPoint cone

2 particles 3 particles 4 particles 4 particles 4 particles + 1 soft
$$\overbrace{\alpha_s^2 \times \ldots}^2 + \overbrace{\alpha_s^3 \times \ldots}^3 + \underbrace{\alpha_s^4 \times \ldots}^4 + \underbrace{\alpha_s^5 \times \log(p_t/\Lambda_{\rm QCD}) \ldots}_{\rm cannot \ be \ trusted} + \ldots$$

- QCD expansion (one α_s can be replaced by $\alpha_{\rm EW}$)
- IRC unsafety (regulated at the hadronic scale $\sim \Lambda_{\rm QCD}$)
- $\alpha_s \log(p_t/\Lambda_{\rm QCD}) \sim 1$
- last meaningful order = $\alpha_{\mathbf{s}}^{\mathbf{3}}$ or $\alpha_{\mathrm{EW}}\alpha_{\mathbf{s}}^{\mathbf{2}}$
- same argument for the Iterative Cone
- 1 order worse for JetClu or the ATLAS cone

Physical impact

	Last meaningful order			
Observable	MidPoint/CMS	JetClu/ATLAS		
Inclusive jet cross sect.	NLO	LO (NLOJet: NLO)		
3 jet cross section	LO	none (NLOJet: NLO)		
W/Z/H + 2 jet x-sect.	LO	none (MCFM: NLO)		
jet masses in 3 jets	none	none (NLOJet: LO)		

Example: (Midpoint-SISCone)/SISCone

- Incl. cross-section: a few %
- Masses in 3-jet events: $\sim 45\%$

Physical impact

	Last meaningful order			
Observable	MidPoint/CMS	JetClu/ATLAS		
Inclusive jet cross sect.	NLO	LO (NLOJet: NLO)		
3 jet cross section	LO	none (NLOJet: NLO)		
W/Z/H + 2 jet x-sect.	LO	none (MCFM: NLO)		
jet masses in 3 jets	none	none (NLOJet: LO)		

Huge effort ($\sim 50~\text{M}{\equiv}$) to compute processes in pQCD

Note:

ullet arXiv:0903.0814: W+2 jets vs. LO QCD using CDF JetClu

ullet arXiv:0903.1748: Z+2 jets vs. NLO QCD using the D0runll cone

 \blacksquare arXiv:0903.1801: Z+2 jets vs. NLO QCD using the CMS iterative cone

We (finally) have a good set of tools

Can we do better?

A growing list

Many ideas and applications:

- √ jet areas and background subtraction
 - → UE, pileup, heavy-ion background subtraction
- √ jet substructure and filtering
 - → see below
- √ "best" jet definition
 - → kinematic dijet reconstruction
- √ boosted objects tagging

$$\longrightarrow H \rightarrow b\bar{b}, t, \tilde{\chi}_0^1 \rightarrow qqq, \dots$$

I will cover the first three (see e.g. Gavin Salam's talk here for the 4th)

New idea #1: filtering

cluster withCambridge/Aachen(R)

- cluster with Cambridge/Aachen(R)
- for each jet

- cluster with Cambridge/Aachen(R)
- for each jet
 - recluster with Cambridge/Aachen(R/2)

- cluster with Cambridge/Aachen(R)
- for each jet
 - recluster with Cambridge/Aachen(R/2)
 - keep the 2 hardest subjets

- cluster with Cambridge/Aachen(R)
- for each jet
 - recluster with Cambridge/Aachen(R/2)
 - keep the 2 hardest subjets

Idea:

- √ keep perturb. radiation
- √ remove UE
- ullet Proven useful for boosted jet H o bar b tagging

[J.Butterworth, A.Davison, M.Rubin, G.Salam, 08]

Proven useful for kinematic reconstructions

[M.Cacciari, J.Rojo, G.Salam, GS, 08]

New idea #2: jet definition optimisation

Optimisation: underlying idea

Competition between

catching perturbative radiation

Out-of-cone radiation:

$$\langle \delta p_t \rangle \propto -\int_R \frac{d\theta}{\theta} \sim -\log(1/R)$$

not catching soft background radiation (underlying event)

 $\langle \delta p_t \rangle \sim$ Soft contents \propto jet area $\sim R^2$

the coefficients depend on the algorithm

Optimisation: underlying idea

Competition between

catching perturbative radiation

Out-of-cone radiation:

$$\langle \delta p_t \rangle \propto -\int_R \frac{d\theta}{\theta} \sim -\log(1/R)$$

What is the optimal jet definition (algo+R!)?

 $\langle \delta p_t \rangle \sim$ Soft contents \propto jet area $\sim R^2$

the coefficients depend on the algorithm

Optimisation: dijet reconstruction

Example process to illustrate various effects:

$$Z' \to q \bar{q} \to 2$$
 jets

- $M_{Z'}$ can be varied (between 100 GeV and 4 TeV)
- Also valid for $H \rightarrow gg$ to study gluon jets
- Reconstruction method:
 - get the 2 hardest jets: j_1 and j_2
 - reconstruct the Z': $m_{Z'} = (j_1 + j_2)^2$

Look how the mass peak is reconstructed

• Also $t\bar{t}$ with full hadronic decay for multijet tests

Optimisation: quality measure (1)

Measure of the jet reconstruction efficiency:

- Forget about measures related to parton-jet matching
- Forget about fits depending on the shape of the peak
- \Rightarrow maximise the signal over background ratio (S/\sqrt{B}) a narrower peak is better.

Optimisation: quality measure (1)

Measure of the jet reconstruction efficiency:

Optimisation: quality measure (2)

Assuming a constant background,

quality measure — effective luminosity ratio

$$\rho_{\mathcal{L}}(\mathrm{JD}_2/\mathrm{JD}_1) = \frac{\mathcal{L} \text{ needed with } \mathrm{JD}_2}{\mathcal{L} \text{ needed with } \mathrm{JD}_1} = \frac{Q_{f=z}^w(\mathrm{JD}_2)}{Q_{f=z}^w(\mathrm{JD}_1)}$$

e.g.
$$\rho_{\mathcal{L}}(JD_2/JD_1) = 2$$

 $\Leftrightarrow \mathrm{JD}_2$ requires 2 times the integrated luminosity of JD_1 to achieve the same discriminative power.

Note: results cross-checked with 2 different definitions of the quality measure

Optimisation: best definition

[M.Cacciari, J.Rojo, G.Salam, GS, 08]

• SISCone and C/A+filt. do slightly better than k_t , C/A or anti- k_t

Optimisation: best definition

[M.Cacciari, J.Rojo, G.Salam, GS, 08]

• SISCone and C/A+filt. do slightly better than k_t , C/A or anti- k_t

Optimisation: consequences

Using a single jet definition for all processes may cost a factor ~ 2 in time for early discoveries at the LHC

Optimisation: consequences

http://quality.fastjet.fr

Using a single jet definition for all processes may cost a factor ~ 2 in time for early discoveries at the LHC

New idea #3: jet area and soft background subtraction

Jet areas

[M.Cacciari, G.Salam, GS, 08]

Area \equiv region where the jet catches soft particles

- Recipe: add infinitely soft particles (aka ghosts) and see in which jet they are clustered
- 2 methods:
 - Passive area: add one ghost at a time and repeat many times
 - Active area: add a set of ghosts and cluster once
- <u>Idea</u>: ghost ≈ background particle
 - \Rightarrow active area \approx uniform background passive area \approx pointlike background
- Notes:
 - passive = active for large multiplicities
 - require an IR-safe algorithm!
 - generic/universal definition (e.g. independent of a calorimeter)

Jet area: examples

Example: active area for a simple event

one ghost at every grid cell

Note: analytic control

Example: perturbative expansion of areas (at order α_s)

$$\langle \mathcal{A}(p_t, R) \rangle = \mathcal{A}_0 + \frac{C_{F,A}}{b_0 \pi} \pi R^2 d \log \left(\frac{\alpha_s(\mathbf{Q}_0)}{\alpha_s(Rp_t)} \right)$$

• area $\neq \pi R^2$, area \neq const.

coefficients computable

ıble	$\mathcal{A}_0/(\pi R^2)$		d	
	passive	active	passive	active
$\overline{k_t}$	1	0.81	0.56	0.52
Cam/Aachen	1	0.81	0.08	0.08
anti- k_t	1	1	0	0
SISCone	1	1/4	-0.06	0.12

• $Q_0 \equiv IR$ regulator \propto background density

Pileup subtraction (for uniform backgrounds)

Basic idea: [M.Cacciari, G.Salam, 08]

$$p_{t, \text{subtracted}} = p_{t, \text{jet}} - \rho_{\text{pileup}} \times \text{Area}_{\text{jet}}$$

- Jet area: [M.Cacciari, G.Salam, G.S., 08]
 - region where the jet catches infinitely soft particles (active/passive)
 - analytic control and understanding in pQCD
- Pileup density per unit area: ρ_{pileup} e.g. estimated from the median of $p_{t,\mathrm{jet}}/\mathrm{Area}_{\mathrm{jet}}$

Pileup subtraction (for uniform backgrounds)

Basic idea: [M.Cacciari, G.Salam, 08]

$$p_{t, \text{subtracted}} = p_{t, \text{jet}} - \rho_{\text{pileup}} \times \text{Area}_{\text{jet}}$$

- Jet area: [M.Cacciari, G.Salam, G.S., 08]
 - region where the jet catches infinitely soft particles (active/passive)
 - analytic control and understanding in pQCD
- Pileup density per unit area: $\rho_{
 m pileup}$ e.g. estimated from the median of $p_{t,
 m jet}/{
 m Area}_{
 m jet}$

Pileup subtraction (for uniform backgrounds)

Basic idea: [M.Cacciari, G.Salam, 08]

$$p_{t, \text{subtracted}} = p_{t, \text{jet}} - \rho_{\text{pileup}} \times \text{Area}_{\text{jet}}$$

- Jet area: [M.Cacciari, G.Salam, G.S., 08]
 - region where the jet catches infinitely soft particles (active/passive)
 - analytic control and understanding in pQCD
- Pileup density per unit area: ρ_{pileup} e.g. estimated from the median of $p_{t,\mathrm{jet}}/\mathrm{Area}_{\mathrm{jet}}$

implemented in FastJet on an event-by-event basis

Effect on dijet reconstruction

Pileup unsubtracted

0.07 $k_t (R=0.6)$ M_{7} , =300 GeV SISCone (R=0.6) 0.06 no pileup with pileup 0.05 $1/N \, dN/dm \, (GeV^{-1})$ 0.04 0.03 0.02 0.01 0 280 340 260 300 320 reconstructed Z' mass (GeV)

width = 29.5 GeV

width = 21.0 GeV

pileup subtracted

width = 21.0 GeV

width = 17.7 GeV

- √ position reasonnable
- √ dispersion reduced (thanks to the event-by-event approach)
- √ used by STAR for the first jet analysis in heavy-ions

Example: application to HI collisions

AA

Framework for study

- Hard event: Pythia(v6.4) or Pythia(v6.4)+PyQuen(v1.5)
- Background: Hydjet(v1.5) (others under study)
- Analysis: FastJet(v2.4)
 Ideally: smallest Δp_t shift, smallest Δp_t dispersion
- Note: in what follows, R fixed to 0.4

Framework for study

Note: in what follows, R fixed to 0.4

Idea #1: use a local range to compute $ho_{ m bkg}$

- Fluctuating background
 - \longrightarrow determine the background density $ho_{\rm bkg}$ from jets in the vicinity of the jet we want to subtract

- Exclude the hardest jets from the determination of $ho_{
 m bkg}$
 - ⇒ reduce the bias in the computation median

Effect of choosing a local range

- ullet effect \sim 0.5-1 GeV
- for limited acceptance, global range \approx local range
- analytic control would be nice

Results: RHIC kinematics

• average p_t shift: anti- k_t and C/A+filt. Ok

Results: RHIC kinematics

- average p_t shift: anti- k_t and C/A+filt. Ok
- p_t shift dispersion: C/A+filt. better

Results: RHIC kinematics

- average p_t shift: anti- k_t and C/A+filt. Ok
- p_t shift dispersion: C/A+filt. better
- watch out C/A+filt. average: back-reaction compensated

Results: RHIC kinematics - quenching

Performances not much affected by quenching (need more models)

Results: LHC kinematics

• average p_t shift: anti- k_t and C/A+filt. Ok

Results: LHC kinematics

• average p_t shift: anti- k_t and C/A+filt. Ok

• p_t shift dispersion: C/A+filt. better anti- k_t Ok

Results: LHC kinematics - quenching

Large quenching effect but anti- k_t 's rigidity plays for it

Summary (1)

Message #1:

Use infrared-and-collinear-safe algorithms

Important to benefit fully from pQCD multilegs/multiloops calculations

Summary (2)

Message #2:

correct tools ⇒ new ideas, new concepts ⇒ new generation of jet definitions

- jet areas → pileup and HI background subtraction
- jet substructure improves reconstruction (Higgs, top, SUSY, ...)

Message #3:

keep some flexibility in the jet definition choice

- optimisation → luminosity gains for LHC searches
- different approaches better understanding of HI collisions

backup slides

- Solution: use a seedless approach, find ALL stable cones
- Naive approach: check stability of each subset of particle

- Solution: use a seedless approach, find ALL stable cones
- Naive approach: check stability of each subset of particle Complexity is $\mathcal{O}\left(N2^N\right)$
 - \Rightarrow definitely unrealistic: 10^{17} years for N=100
- Midpoint complexity: $\mathcal{O}\left(N^3\right)$

- Solution: use a seedless approach, find ALL stable cones
- Midpoint complexity: $\mathcal{O}\left(N^3\right)$

<u>Idea</u>: use geometric arguments

- Each enclosure can be moved (in any dir.) until it touches a point
- ... then rotated until it touches a second one
- ⇒ Enumerate all pairs of particles
 with 2 circle orientations and 4 possible inclusion/exclusion
 → find all enclosures

- Solution: use a seedless approach, find ALL stable cones
- Midpoint complexity: $\mathcal{O}\left(N^3\right)$

<u>Idea</u>: use geometric arguments

- ⇒ Enumerate all pairs of particles with 2 circle orientations and 4 possible inclusion/exclusion
- → find all enclosures
- Complexity: $\mathcal{O}\left(N^3\right)$, with improvements: $\mathcal{O}\left(N^2\log(N)\right)$

— C++ implementation: Seedless Infrared-Safe Cone algorithm (SISCone) G.Salam, G.S., JHEP 04 (2007) 086; http://projects.hepforge.org/siscone

NB.: also available from FastJet [M.Cacciari, G.Salam, G.S.]; http://www.fastjet.fr

Algorithm timings

Recombination algorithms very fast

[M. Cacciari, G. Salam, 06]

 SISCone not slower than Midpoint (even with a 1 GeV seed threshold)

A technical point: Back-reaction

Additional soft background has 2 effects:

- Throw soft particles in the hard jet: dealt with by subtraction
- Modify the hard scattering (back-reaction)
 - can be pointlike or diffuse
 - gain:

no medium: $p_t = p_{t1}$

medium: $p_t = p_{t1} + p_{t2} + p_{tm}$

loss:

no medium: $p_t = p_{t1} + p_{t2}$

medium: $p_t = p_{t1} + p_{tm}$

A technical point: Back-reaction

Additional soft background has 2 effects:

- Throw soft particles in the hard jet: dealt with by subtraction
- Modify the hard scattering (back-reaction)
 - can be pointlike or diffuse
 - tractable analytically (similar to areas)
 - $k_t \gtrsim$ Cambridge > SISCone \gg anti- k_t

