
Defining jets at the dawn of the LHC

Grégory Soyez

CERN

In collaboration with Gavin Salam, Matteo Cacciari and Juan Rojo

CERN — October 9 2009

– p. 1



Plan

Jet algorithms and jet definitions

basic ideas: why jets? recombinations and cones

failures of the 20th-century cone algorithms

new algorithms without the failures

More advanced topics: how to better use the tools we have?

jet areas: tool for pileup subtraction

new generation of algorithms

optimal choice (for kinematic reconstructions)
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Unavoidable theory

QCD probability for gluon emission (angle θ and ⊥-mom. kt):

dP ∝ αs

dθ

θ

dkt

kt

Two divergences:

θ ≈ 0

collinear

pt

kt ≪ pt

soft

Divergences cancelled by virtual corrections
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Motivation: why jets

Collinear divergence ⇒ QCD produces “jetty” showers

Example: LEP (OPAL) events

2 jets 3 jets

“Jets” ≡ bunch of collimated particles ∼= hard partons
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“collinear” has some arbitraryness
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Motivation: why jets

Collinear divergence ⇒ QCD produces “jetty” showers

“Jets” ≡ bunch of collimated particles ∼= hard partons

BUT

a “parton” is an ambiguous concept (NLO)

“collinear” has some arbitraryness

2 jets 3 jets ? jets

In practice: use of a jet definition

particles {pi} jets {jk}
jet

definition

Jet algorithm: the recipe (insufficient!)
Jet definition: algorithm + the parameters
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20th century jet algorithms

Recombination: Cone:
kt algorithm

Cambridge/Aachen alg.

a

CDF JetClu

CDF MidPoint

D0 (run II) Cone

PxCone

ATLAS Cone

CMS Iterative Cone

PyCell/CellJet

GetJet
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20th century jet algorithms

Recombination: Cone:
kt algorithm

Cambridge/Aachen alg.

a

CDF JetClu

CDF MidPoint

D0 (run II) Cone

PxCone

ATLAS Cone

CMS Iterative Cone

PyCell/CellJet

GetJet

Idea: undo the showering

Successively
b find the closest pair of particles
b recombine them

Distance:
kt:
b di,j = min(k2

t,i, k
2
t,j)(∆φ2

i,j + ∆y2
i,j)

Cam/Aachen:
b di,j = ∆φ2

i,j + ∆y2
i,j

stop at a distance R
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20th century jet algorithms

Recombination: Cone:
kt algorithm

Cambridge/Aachen alg.

a

CDF JetClu

CDF MidPoint

D0 (run II) Cone

PxCone

ATLAS Cone

CMS Iterative Cone

PyCell/CellJet

GetJet

Idea: dominant flow of energy

Stable cone (radius R):
sum of particles in the cone points
towards the cone centre

All these are iterative cones:
b start from a seed
b iterate until stable

seeds = {particles, midpoints}

blJet ≡ stable cone
blmodulo overlapping
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20th century jet algorithms

Recombination: Cone:
kt algorithm

Cambridge/Aachen alg.

a

CDF JetClu

CDF MidPoint

D0 (run II) Cone

PxCone

ATLAS Cone

CMS Iterative Cone

PyCell/CellJet

GetJet

Cone with split-merge

Split/merge if the overlap is
smaller/larger than a threshold f

– p. 5



20th century jet algorithms

Recombination: Cone:
kt algorithm

Cambridge/Aachen alg.

a

CDF JetClu

CDF MidPoint

D0 (run II) Cone

PxCone

ATLAS Cone

CMS Iterative Cone

PyCell/CellJet

GetJet

Cone with progressive removal

Successively
b iterate from hardest particle
b call that a jet (remove particles)

Basic property:
blhard circular jets
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20th century jet algorithms

Recombination: Cone:
kt algorithm

Cambridge/Aachen alg.

a

CDF JetClu

CDF MidPoint

D0 (run II) Cone

PxCone

ATLAS Cone

CMS Iterative Cone

PyCell/CellJet

GetJet

Xperturbative behaviour

XUE sensitivity
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21st century: how does that picture change?
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QCD divergences

Ingredient: QCD soft and collinear divergencies

LO NLO(virt) NLO(real)
∞ ∞

∞ (from soft gluons) cancel (inclusive x-section)
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Ingredient: QCD soft and collinear divergencies
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Consider an extra (NLO) soft gluon

Assume LO gives 2 jets ⇒ NLO(virt) gives 2 jets
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QCD divergences

Ingredient: QCD soft and collinear divergencies

LO NLO(virt) NLO(real)
∞ ∞

Consider an extra (NLO) soft gluon

Assume LO gives 2 jets ⇒ NLO(virt) gives 2 jets

NLO(real) gives 2 jets ⇒ ∞ cancel ⇒ finite jet cross-section
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QCD divergences

Ingredient: QCD soft and collinear divergencies

LO NLO(virt) NLO(real)
∞ ∞

Consider an extra (NLO) soft gluon

Assume LO gives 2 jets ⇒ NLO(virt) gives 2 jets

NLO(real) gives 2 jets ⇒ ∞ cancel ⇒ finite jet cross-section
NLO(real) gives 1 jets ⇒ ∞ do not cancel ⇒ infinite jet x-section
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QCD divergences

Ingredient: QCD soft and collinear divergencies

LO NLO(virt) NLO(real)
∞ ∞

For pQCD to make sense, the (hard) jets should not change when

one has a soft emission i.e. adds a very soft gluon

one has a collinear splitting
i.e. replaces one parton by two at the same place (η, φ)

[SNOWMASS Accords, Fermilab, 1990]
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IR (un)safety? JetClu and Atlas Cone

-1 0 1 2 3
0
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pt
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0

100
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pt

φ
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IR (un)safety? JetClu and Atlas Cone

-1 0 1 2 3
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pt
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pt

φ

2 jets 1 jet

A soft gluon changed the number of jets

⇒ IR unsafety of JetClu and the ATLAS Cone
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IR (un)safety? JetClu and Atlas Cone

-1 0 1 2 3
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pt
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pt

φ

2 jets 1 jet

MidPoint
seed

A soft gluon changed the number of jets

⇒ IR unsafety of JetClu and the ATLAS Cone

Fixed by MidPoint
[Blazey et al., 00]
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IR (un)safety? MidPoint
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IR (un)safety? MidPoint
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IR (un)safety? MidPoint

-1 0 1 2 3
0
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pt

φ -1 0 1 2 3
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pt

φ

2 jets 1 jet

A soft gluon changed the number of jets

⇒ IR unsafety of MidPoint (1 order in αs later than JetClu)
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IR (un)safety? MidPoint
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pt

φ

2 jets 1 jet

missed stable cone

Solution: be sure to find all stable cones

SISCone: Seedless Infrared-Safe Cone algorithm
http://projects.hepforge.org/siscone

[G.Salam, G.S., 07]

Idea: enumerate enclosures by enumerating pairs of particles
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Collinear (un)safety? the CMS iterative cone
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Collinear (un)safety? the CMS iterative cone
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1st seed
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0
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pt

φ

1st seed 2nd seed

1 jet 2 jets

A colinear splitting changed the number of jets

⇒ Collinear unsafety of the CMS iterative cone
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Anti- kt

Come back to recombination-type algorithms:

dij = min(k2p
t,i, k

2p
t,j)

(
∆φ2

ij + ∆η2
ij

)

p = 1: kt algorithm

p = 0: Aachen/Cambridge algorithm
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Anti- kt

Come back to recombination-type algorithms:

dij = min(k2p
t,i, k

2p
t,j)

(
∆φ2

ij + ∆η2
ij

)

p = 1: kt algorithm

p = 0: Aachen/Cambridge algorithm

p = −1: anti-kt algorithm [M.Cacciari, G.Salam, G.S., 08]

Why should that be related to the iterative cone ?!?

“large kt ⇒ small distance”
i.e. hard partons “eat” everything up to a distance R

i.e. circular/regular jets, jet borders unmodified by soft radiation

infrared and collinear safe
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21st century jet algorithms

Recombination: Cone:
kt algorithm

Cambridge/Aachen alg.

anti-kt algorithm

a

CDF JetClu

CDF MidPoint

D0 (run II) Cone

PxCone

ATLAS Cone

CMS Iterative Cone

PyCell/CellJet

GetJet

SISCone

4 available
safe algorithms

anti-kt adopted as default by ATLAS and CMS
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21st century jet algorithms

Recombination: Cone:
kt algorithm

Cambridge/Aachen alg.

anti-kt algorithm

a

CDF JetClu

CDF MidPoint

D0 (run II) Cone

PxCone

ATLAS Cone

CMS Iterative Cone

PyCell/CellJet

GetJet

SISCone

4 available
safe algorithms

anti-kt adopted as default by ATLAS and CMS

#-----------------------------------------------------------

# FastJet release 2.4

# Written by M. Cacciari, G.P. Salam and G. Soyez

# http://www.fastjet.fr

#-----------------------------------------------------------

All those algorithms (and much more)
implemented (efficiently) in FastJet
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When does IRC safety matters?

Take e.g. the MidPoint cone

2 particles
︷ ︸︸ ︷

α2
s × . . . +

3 particles
︷ ︸︸ ︷

α3
s × . . . +

4 particles
︷ ︸︸ ︷

α4
s × . . . +

4 particles + 1 soft
︷ ︸︸ ︷

α5
s × log(pt/ΛQCD) . . . + . . .

︸ ︷︷ ︸

cannot be trusted

QCD expansion (one αs can be replaced by αEW)
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2 particles
︷ ︸︸ ︷
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s × . . . +

3 particles
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s × . . . +

4 particles
︷ ︸︸ ︷
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s × . . . +

4 particles + 1 soft
︷ ︸︸ ︷

α5
s × log(pt/ΛQCD) . . . + . . .

︸ ︷︷ ︸

cannot be trusted

QCD expansion (one αs can be replaced by αEW)

IRC unsafety (regulated at the hadronic scale ∼ ΛQCD)

αslog(pt/ΛQCD) ∼ 1

last meaningful order = α3

s
or αEWα2

s
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When does IRC safety matters?

Take e.g. the MidPoint cone

2 particles
︷ ︸︸ ︷

α2
s × . . . +

3 particles
︷ ︸︸ ︷

α3
s × . . . +

4 particles
︷ ︸︸ ︷

α4
s × . . . +

4 particles + 1 soft
︷ ︸︸ ︷

α5
s × log(pt/ΛQCD) . . . + . . .

︸ ︷︷ ︸

cannot be trusted

QCD expansion (one αs can be replaced by αEW)

IRC unsafety (regulated at the hadronic scale ∼ ΛQCD)

αslog(pt/ΛQCD) ∼ 1

last meaningful order = α3

s
or αEWα2

s

same argument for the Iterative Cone

1 order worse for JetClu or the ATLAS cone
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Physical impact

Last meaningful order

Observable MidPoint/CMS JetClu/ATLAS

Inclusive jet cross sect. NLO LO (NLOJet: NLO)

3 jet cross section LO none (NLOJet: NLO)

W/Z/H + 2 jet x-sect. LO none (MCFM: NLO)

jet masses in 3 jets none none (NLOJet: LO)

Example: (Midpoint-SISCone)/SISCone

0.00
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 50  100  150  200

dσ
m

id
po

in
t(

1)
/d

p t
 / 

dσ
S

IS
C

on
e/

dp
t −

 1

pt [GeV]

pp    √s = 14 TeV

R=0.7, f=0.5, |y|<0.7Pythia 6.4

(b) hadron-level (with UE)

hadron-level (no UE)

parton-level

Incl. cross-section: a few %

Masses in 3-jet events: ∼ 45%

0 10 20 30 40 50 60 70 80 90 100
M (GeV)

0

0.1

0.2
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0.4

0.5

re
l. 

di
ff.

 fo
r 

dσ
/d

M
2 Mass spectrum of jet 2

midpoint(0) -- SISCone
SISCone

NLOJet
R=0.7, f=0.5
∆ R23 < 1.4
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Physical impact

Last meaningful order

Observable MidPoint/CMS JetClu/ATLAS

Inclusive jet cross sect. NLO LO (NLOJet: NLO)

3 jet cross section LO none (NLOJet: NLO)

W/Z/H + 2 jet x-sect. LO none (MCFM: NLO)

jet masses in 3 jets none none (NLOJet: LO)

!
Huge effort (∼ 50 Me) to compute
processes in pQCD

Note: arXiv:0903.0814: W + 2 jets vs. LO QCD using CDF JetClu

arXiv:0903.1748: Z + 2 jets vs. NLO QCD using the D0runII cone

arXiv:0903.1801: Z + 2 jets vs. NLO QCD using the CMS iterative cone
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We (finally) have a good set of tools

Can we do better?
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A growing list

Many ideas and applications:

X jet areas and background subtraction
−→ UE, pileup, heavy-ion background subtraction

X jet substructure and filtering
−→ see below

X “best” jet definition
−→ kinematic dijet reconstruction

X boosted objects tagging
−→ H → bb̄, t, χ̃1

0 → qqq, . . .

I will cover the first three (see e.g. Gavin Salam’s talk here for the 4th)
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New idea #1: filtering
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Filtering
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Filtering
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Filtering
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Filtering
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cluster with
Cambridge/Aachen(R)

for each jet

recluster with
Cambridge/Aachen(R/2)

keep the 2 hardest subjets

Idea:
X keep perturb. radiation
X remove UE

Proven useful for boosted jet H → bb̄ tagging
[J.Butterworth, A.Davison, M.Rubin, G.Salam, 08]

Proven useful for kinematic reconstructions
[M.Cacciari, J.Rojo, G.Salam, GS, 08]
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New idea #2: jet definition optimisation
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Optimisation: underlying idea

Competition between

catching perturbative radiation

Out-of-cone radiation:

b 〈δpt〉 ∝ −
∫

R

dθ

θ
∼ − log(1/R)

not catching soft background radiation (underlying event)

〈δpt〉 ∼ Soft contents ∝ jet area ∼ R2

the coefficients depend on the algorithm
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Optimisation: underlying idea

Competition between

catching perturbative radiation

Out-of-cone radiation:

b 〈δpt〉 ∝ −
∫

R

dθ

θ
∼ − log(1/R)

not catching soft background radiation (underlying event)

〈δpt〉 ∼ Soft contents ∝ jet area ∼ R2

the coefficients depend on the algorithm

What is the optimal jet definition (algo+R!)?
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Optimisation: dijet reconstruction

Example process to illustrate various effects:

Z ′ → qq̄ → 2 jets

MZ′ can be varied (between 100 GeV and 4 TeV)

Also valid for H → gg to study gluon jets

Reconstruction method:

get the 2 hardest jets: j1 and j2

reconstruct the Z ′: mZ′ = (j1 + j2)
2

Look how the mass peak is reconstructed

Also tt̄ with full hadronic decay for multijet tests
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Optimisation: quality measure (1)

Measure of the jet reconstruction efficiency:

Forget about measures related to parton-jet matching

Forget about fits depending on the shape of the peak

⇒ maximise the signal over background ratio (S/
√

B)
a narrower peak is better.

1/
N

 d
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f=0.12 = 7.4 GeV
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Optimisation: quality measure (1)

Measure of the jet reconstruction efficiency:

Forget about measures related to parton-jet matching

Forget about fits depending on the shape of the peak

⇒ maximise the signal over background ratio (S/
√
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a narrower peak is better.
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Optimisation: quality measure (2)

Assuming a constant background,

quality measure −→ effective luminosity ratio

ρL(JD2/JD1) =
L needed with JD2

L needed with JD1

=
Qw

f=z(JD2)

Qw
f=z(JD1)

e.g. ρL(JD2/JD1) = 2

⇔ JD2 requires 2 times the integrated luminosity of JD1

⇔ to achieve the same discriminative power.

Note: results cross-checked with 2 different definitions of the quality measure
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Optimisation: best definition

[M.Cacciari, J.Rojo, G.Salam, GS, 08]

SISCone and C/A+filt. do slightly better than kt, C/A or anti-kt
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Optimisation: best definition

[M.Cacciari, J.Rojo, G.Salam, GS, 08]

SISCone and C/A+filt. do slightly better than kt, C/A or anti-kt

M ր ⇒ Rbest ր (and Rbest(g) > Rbest(q))
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Optimisation: consequences
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Using a single jet definition for all processes
may cost a factor ∼ 2 in time for early discoveries at the LHC
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Using a single jet definition for all processes
may cost a factor ∼ 2 in time for early discoveries at the LHC

see

http://quality.fastjet.fr
for more
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New idea #3: jet area and soft background
subtraction
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Jet areas

[M.Cacciari, G.Salam, GS, 08]

Area ≡ region where the jet catches soft particles

Recipe: add infinitely soft particles (aka ghosts)
Recipe: and see in which jet they are clustered

2 methods:

Passive area: add one ghost at a time and repeat many times

Active area: add a set of ghosts and cluster once

Idea: ghost ≈ background particle
⇒ active area ≈ uniform background
⇒ passive area ≈ pointlike background

Notes:

passive = active for large multiplicities

require an IR-safe algorithm!

generic/universal definition (e.g. independent of a calorimeter)
– p. 27



Jet area: examples

Example: active area for a simple event

kt anti-kt

one ghost at every grid cell

– p. 28



Note: analytic control

Example: perturbative expansion of areas (at order αs)

〈A(pt, R)〉 = A0 +
CF,A

b0π
πR2 d log

(
αs(Q0)

αs(Rpt)

)

area 6= πR2, area 6= const.

coefficients computable
A0/(πR2) d

passive active passive active

kt 1 0.81 0.56 0.52

Cam/Aachen 1 0.81 0.08 0.08

anti-kt 1 1 0 0

SISCone 1 1/4 -0.06 0.12

Q0 ≡ IR regulator ∝ background density

– p. 29



Pileup subtraction (for uniform backgrounds)

Basic idea: [M.Cacciari, G.Salam, 08]

pt,subtracted = pt,jet − ρpileup × Areajet

Jet area: [M.Cacciari, G.Salam, G.S., 08]

region where the jet catches infinitely soft particles
(active/passive)

analytic control and
understanding in pQCD

Pileup density per unit area: ρpileup

e.g. estimated from the median
e.g. of pt,jet/Areajet
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Pileup subtraction (for uniform backgrounds)

Basic idea: [M.Cacciari, G.Salam, 08]

pt,subtracted = pt,jet − ρpileup × Areajet

Jet area: [M.Cacciari, G.Salam, G.S., 08]

region where the jet catches infinitely soft particles
(active/passive)

analytic control and
understanding in pQCD

Pileup density per unit area: ρpileup

e.g. estimated from the median
e.g. of pt,jet/Areajet
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hard jets

implemented in FastJet
on an event-by-event basis

– p. 30



Effect on dijet reconstruction

Pileup unsubtracted pileup subtracted
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width = 29.5 GeV
width = 21.0 GeV

width = 21.0 GeV
width = 17.7 GeV

X position reasonnable

X dispersion reduced (thanks to the event-by-event approach)

X used by STAR for the first jet analysis in heavy-ions
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Example: application to HI collisions

pp + pileup AA
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Framework for study

Hard event
(quenched or unquenched)

Hard event
+ Background event

embed

Hard jets

Full jets

cluster

subtract

cluster

subtract

∆pt

average

dispersion

Hard event: Pythia(v6.4) or Pythia(v6.4)+PyQuen(v1.5)

Background: Hydjet(v1.5) (others under study)

Analysis: FastJet(v2.4)

Ideally: smallest ∆pt shift, smallest ∆pt dispersion

Note: in what follows, R fixed to 0.4

– p. 33



Framework for study

Hard event
(quenched or unquenched)

Hard event
+ Background event

embed

Hard jets

Full jets

cluster

subtract

cluster

subtract

∆pt

average

dispersion

Hard event: Pythia(v6.4) or Pythia(v6.4)+PyQuen(v1.5)

Background: Hydjet(v1.5) (others under study)

Analysis: FastJet(v2.4)

Ideally: smallest ∆pt shift, smallest ∆pt dispersion

Note: in what follows, R fixed to 0.4

Generic trends
under control

Final numbers
may change

[M.Cacciari, J.Rojo, G.Salam, GS, in prep.]
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Idea #1: use a local range to compute ρbkg

Fluctuating background
−→ determine the background density ρbkg

−→ from jets in the vicinity of the jet we want to subtract

b b b b

global StripRange CircularRange DoughnutRange

Exclude the hardest jets from the determination of ρbkg

⇒ reduce the bias in the computation median

– p. 34



Effect of choosing a local range
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analytic control would be nice
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Results: RHIC kinematics
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Results: RHIC kinematics
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Results: RHIC kinematics – quenching
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Performances not much affected by quenching (need more models)
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Results: LHC kinematics
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Results: LHC kinematics – quenching
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Large quenching effect but anti-kt’s rigidity plays for it
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Summary (1)

Message #1:

Use infrared-and-collinear-safe algorithms

CMS It. Cone anti-kt

√
fast√
safe

CDF/D0 MidPoint
ATLAS Cone

ff

SISCone
√

fast√
safe

Important to benefit fully from pQCD multilegs/multiloops calculations
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Summary (2)

Message #2:

correct tools ⇒ new ideas, new concepts
correct tools ⇒ new generation of jet definitions

jet areas −→ pileup and HI background subtraction

jet substructure improves reconstruction (Higgs, top, SUSY, ...)

Message #3:

keep some flexibility in the jet definition choice

optimisation −→ luminosity gains for LHC searches

different approaches −→ better understanding of HI collisions
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backup slides
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The SISCone search for stable cones

Solution: use a seedless approach, find ALL stable cones

Naive approach: check stability of each subset of particle
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The SISCone search for stable cones

Solution: use a seedless approach, find ALL stable cones

Naive approach: check stability of each subset of particle
Complexity is O

(
N2N

)

⇒ definitely unrealistic: 1017 years for N = 100

Midpoint complexity: O
(
N3

)
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The SISCone search for stable cones

Solution: use a seedless approach, find ALL stable cones

Midpoint complexity: O
(
N3

)

Idea: use geometric arguments
(c)(b)(a)

Each enclosure can be moved (in any dir.) until it touches a point

... then rotated until it touches a second one

⇒ Enumerate all pairs of particles
⇒ with 2 circle orientations and 4 possible inclusion/exclusion
−→ find all enclosures

– p. 43



The SISCone search for stable cones

Solution: use a seedless approach, find ALL stable cones

Midpoint complexity: O
(
N3

)

Idea: use geometric arguments

⇒ Enumerate all pairs of particles
⇒ with 2 circle orientations and 4 possible inclusion/exclusion
−→ find all enclosures

Complexity: O
(
N3

)
, with improvements: O

(
N2 log(N)

)

−→ C++ implementation: Seedless Infrared-Safe Cone algorithm (SISCone)
G.Salam, G.S., JHEP 04 (2007) 086; http://projects.hepforge.org/siscone

NB.: also available from FastJet
[M.Cacciari, G.Salam, G.S.]; http://www.fastjet.fr

– p. 43

C++


Algorithm timings
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Recombination algorithms very fast

[M. Cacciari, G. Salam, 06]

SISCone not slower than Midpoint (even with a 1 GeV seed
threshold)
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A technical point: Back-reaction

Additional soft background has 2 effects:

Throw soft particles in the hard jet: dealt with by subtraction

Modify the hard scattering (back-reaction)

can be pointlike or diffuse

gain:

1 2

no medium: pt = pt1

1 2m

medium: pt = pt1 + pt2 + ptm

loss:

1 2

no medium: pt = pt1 + pt2

1 2 m

medium: pt = pt1 + ptm
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A technical point: Back-reaction

Additional soft background has 2 effects:

Throw soft particles in the hard jet: dealt with by subtraction

Modify the hard scattering (back-reaction)

can be pointlike or diffuse

tractable analytically (similar to areas)

kt & Cambridge > SISCone ≫ anti-kt
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