Tagging boosted jets
Application to $\bar{t}tH$

Grégory Soyez

IPhT, Saclay — CERN

CERN — PhenClub — March 25 2010
p_T distribution

$\frac{1}{\sigma_{tot}} \frac{d\sigma}{dp_T}$

ttH: $p_{T,t}$

ttH: $p_{T,H}$

Wjj: $p_{T,j}$

WH: $p_{T,H}$

ttH more often boosted than WH and Wjj
reconstructed \(W \) and \(t \)
Reconstructed events for $m_H = 120$ GeV, 1 fb$^{-1}$

<table>
<thead>
<tr>
<th></th>
<th>signal</th>
<th>$t\bar{t}Z$</th>
<th>$t\bar{t}b\bar{b}$</th>
<th>$t\bar{t}$+jets</th>
</tr>
</thead>
<tbody>
<tr>
<td>after kinem cuts</td>
<td>24.1</td>
<td>6.9</td>
<td>191</td>
<td>4160</td>
</tr>
<tr>
<td>after top tag</td>
<td>10.2</td>
<td>2.9</td>
<td>70.4</td>
<td>1457</td>
</tr>
<tr>
<td>after Higgs tag</td>
<td>3.2</td>
<td>0.47</td>
<td>13.8</td>
<td>121</td>
</tr>
<tr>
<td>with 2 b tags</td>
<td>1.0</td>
<td>0.08</td>
<td>2.3</td>
<td>1.4</td>
</tr>
<tr>
<td>with 3$^\text{rd}$ b tag</td>
<td>0.48</td>
<td>0.03</td>
<td>1.09</td>
<td>0.06</td>
</tr>
</tbody>
</table>
Reconstruccion efficiencies (2/2)

Integrated lumi of 100 fb$^{-1}$:

<table>
<thead>
<tr>
<th>m_H (GeV)</th>
<th>S</th>
<th>B</th>
<th>S/B</th>
<th>S/\sqrt{B}</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>120</td>
<td>380</td>
<td>1/3.2</td>
<td>6.2</td>
</tr>
<tr>
<td>130</td>
<td>51</td>
<td>330</td>
<td>1/6.5</td>
<td>2.8</td>
</tr>
<tr>
<td>115</td>
<td>57</td>
<td>118</td>
<td>1/2.1</td>
<td>5.2</td>
</tr>
<tr>
<td>120</td>
<td>48</td>
<td>115</td>
<td>1/2.4</td>
<td>4.5</td>
</tr>
<tr>
<td>130</td>
<td>29</td>
<td>103</td>
<td>1/3.6</td>
<td>2.9</td>
</tr>
</tbody>
</table>

- better significance with 2 b tags
- better S/B for 3 b tags
- ATLAS: 30 fb$^{-1}$, no systematic uncertainties
 ⇒ significance 1.8-2.2σ, $S/B \sim 1/9$.
Reconstructed Higgs (including 3 b tags)

\[\frac{d\sigma}{dm_{b\bar{b}}} \ [fb/5 \ GeV] \]

- $t\bar{t}H$
- $t\bar{t}Z$
- $t\bar{t}jj$
- $t\bar{t}b\bar{b}$

- no UE

- with UE

\[m_{b\bar{b}} \ [GeV] \]

- 0.
- 0.6
- 0.4
- 0.2
- 0.0

- 30
- 60
- 90
- 120
- 150
- 180

- 0
- 0.0
- 0.2
- 0.4
- 0.6

- 180
- 150
- 120
- 90
- 60
- 30