Phenomenology of hadronic collisions

Grégory Soyez

CERN & IPhT, CEA Saclay

BND summer school — Oostende, Belgium — September 7-17 2010

Plan

You are now experts in computing Feynman diagrams

You (hopefully) want to know how to compute things at hadronic colliders (the LHC in particular)



Disclaimer

The physics of hadronic colliders is a very vast topic:

Disclaimer

The physics of hadronic colliders is a very vast topic:

- ATLAS TDR (Detector and Physics Performance): 1852 pages
- CMS TDR (2 volumes): 1317 pages

A good coverage of "basic" topics in collider physics:

QCD and Collider Physics, R. K. Ellis, W. J. Stirling and B.
 R. Webber (447 pages)

Disclaimer

The physics of hadronic colliders is a very vast topic:

- ATLAS TDR (Detector and Physics Performance): 1852 pages
- CMS TDR (2 volumes): 1317 pages

A good coverage of "basic" topics in collider physics:

QCD and Collider Physics, R. K. Ellis, W. J. Stirling and B.
 R. Webber (447 pages)

I won't be able to cover all that in 6+2 hours!

Plan #2

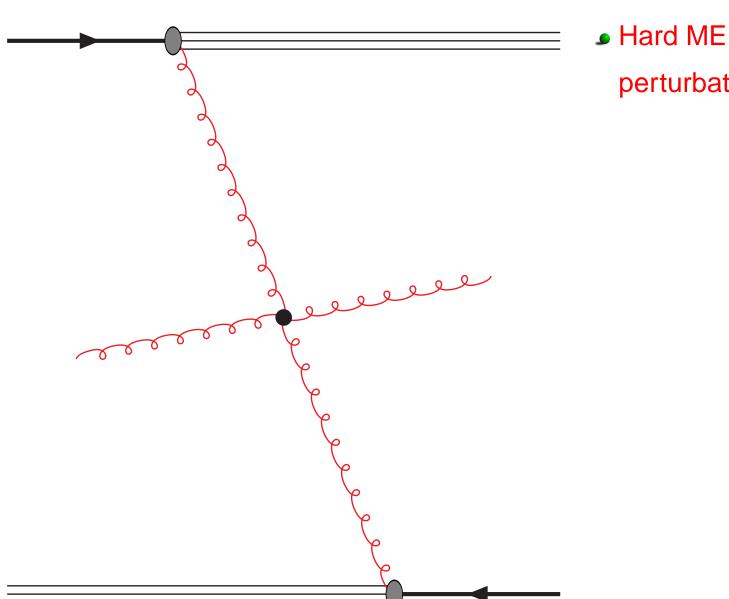
How to describe a collision between 2 hadrons?

The very fundamental collision

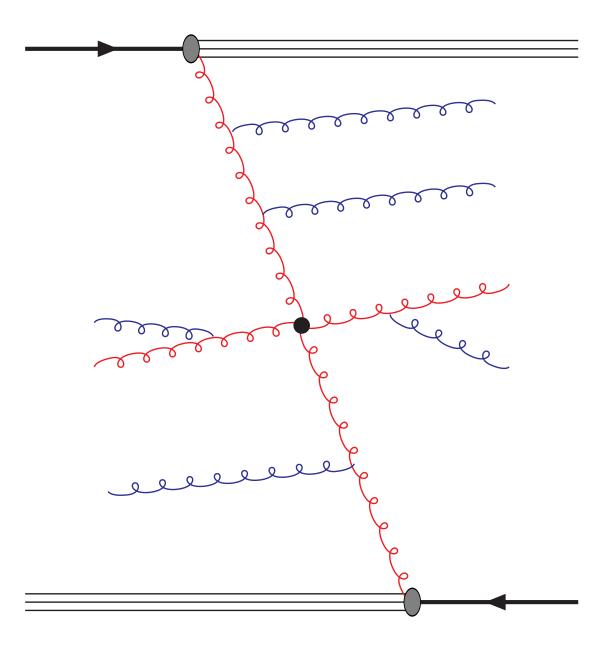
$$\sigma = f_a \otimes f_b \otimes \hat{\sigma}$$

• "take a parton out of each proton" $f_a \equiv \text{parton distribution function (PDF)}$ for quark and gluons a big chapter of these lectures

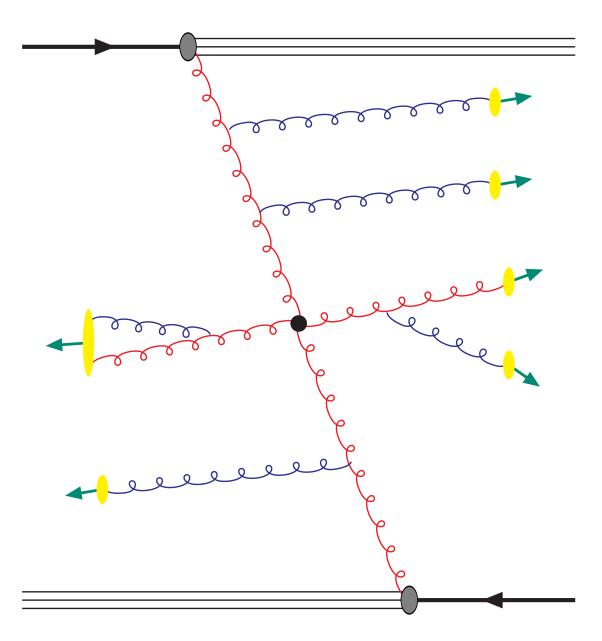
 hard matrix element perturbative computation Forde-Feynman rules



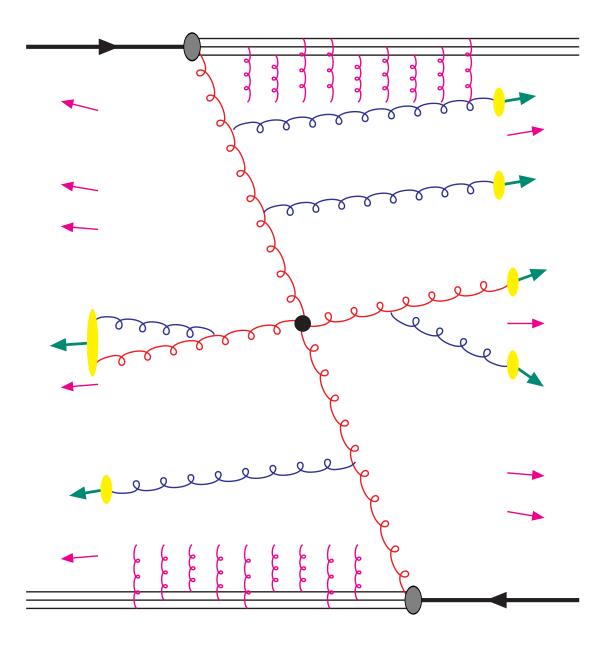
perturbative



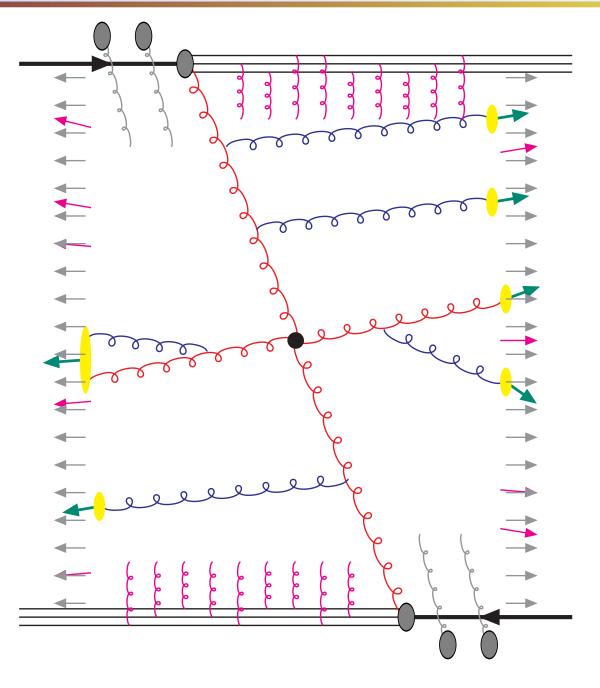
- Hard ME perturbative
- Parton branching initial+final state radiation



- Hard ME perturbative
- Parton branching initial+final state radiation
- $m{ ilde{\hspace{-0.05cm} J}}$ Hadronisation $q,g o {\sf hadrons}$



- Hard ME perturbative
- Parton branching initial+final state radiation
- Hadronisation q, g o hadrons
- Multiple interactions
 Underlying event (UE)



- Hard ME perturbative
- Parton branching initial+final state radiation
- Hadronisation $q, g \rightarrow \mathsf{hadrons}$
- Multiple interactions
 Underlying event (UE)
- ightharpoonup Pile-up \lesssim 25 pp at the LHC

Step by step...

We shall investigate those effects one by one:

- e^+e^- collisions for QCD final state (and hadronisation)
- ep collisions aka Deep Inelastic scattering (DIS) for the Parton Distribution Functions
- pp collisions: put everything together
 - kinematics
 - Monte-Carlo
 - jets + various processes (W/Z, Higgs, top, ...)

Step by step...

We shall investigate those effects one by one:

• e^+e^- collisions for QCD final state (and hadronisation) ep collisions aka Deep Inelastic scattering (DIS) for the Parton Distribution Functions pp collisions: put everything together kinematics Monte-Carlo jets + various processes (W/Z, Higgs, top, ...)

Tutorial

The plan is to play with Pythia 8 (the C++ version) and FastJet.

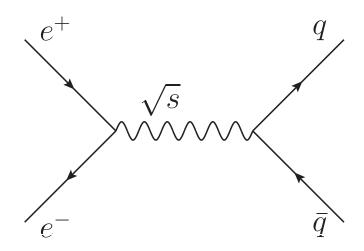
You can get them (and a few sample codes) from the link at

http://soyez.fastjet.fr

e^+e^- collisions

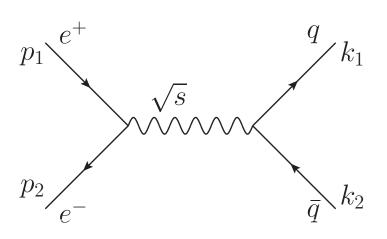
QCD final state

 e^+e^- collisions give QCD final state without initial-state/beam contamination



Useful for many QCD studies

Intermediate state can be γ or Z, we only consider γ for simplicity

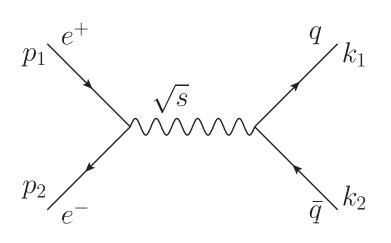


$$p_1 \equiv \frac{\sqrt{s}}{2}(0, 0, 1, 1)$$

$$p_2 \equiv \frac{\sqrt{s}}{2}(0, 0, -1, 1)$$

$$k_1 \equiv \frac{\sqrt{s}}{2}(\sin(\theta), 0, \cos(\theta), 1)$$

$$k_2 \equiv \frac{\sqrt{s}}{2}(-\sin(\theta), 0, -\cos(\theta), 1)$$



$$p_1 \equiv \frac{\sqrt{s}}{2}(0, 0, 1, 1)$$

$$p_2 \equiv \frac{\sqrt{s}}{2}(0, 0, -1, 1)$$

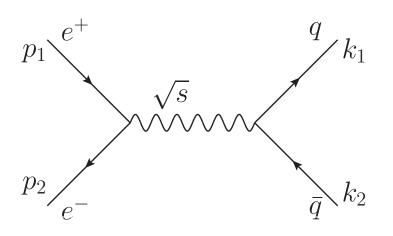
$$k_1 \equiv \frac{\sqrt{s}}{2}(\sin(\theta), 0, \cos(\theta), 1)$$

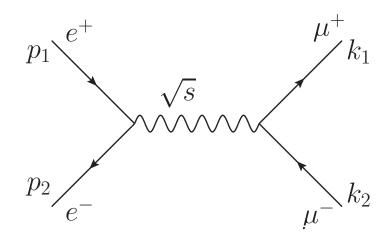
$$k_2 \equiv \frac{\sqrt{s}}{2}(-\sin(\theta), 0, -\cos(\theta), 1)$$

$$\frac{d\sigma}{d\cos(\theta)} = e_q^2 N_c \frac{\pi \alpha_e^2}{2s} [1 + \cos^2(\theta)]$$

$$\sigma(e^+ e^- \to q\bar{q}) = N_c \left(\sum_q e_q^2\right) \sigma_0$$

$$\sigma_0 = \frac{4\pi \alpha_e^2}{3s}$$





$$\frac{d\sigma}{d\cos(\theta)} = e_q^2 N_c \frac{\pi \alpha_e^2}{2s} [1 + \cos^2(\theta)]$$

$$\sigma(e^+e^- \to q\bar{q}) = N_c \left(\sum_q e_q^2\right) \sigma_0 \qquad \sigma(e^+e^- \to \mu^+\mu^-) = \sigma_0$$

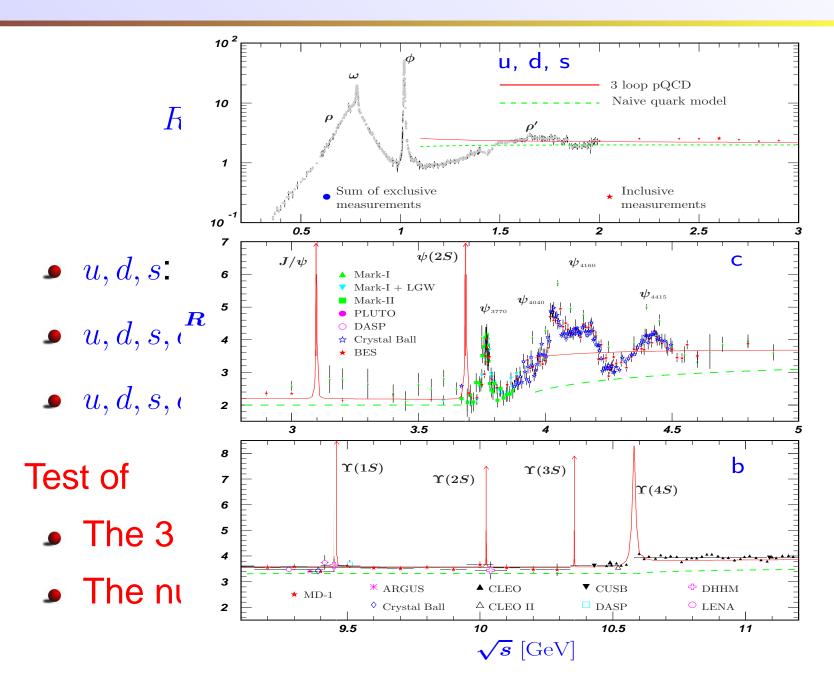
$$\sigma_0 = \frac{4\pi\alpha_e^2}{3s}$$

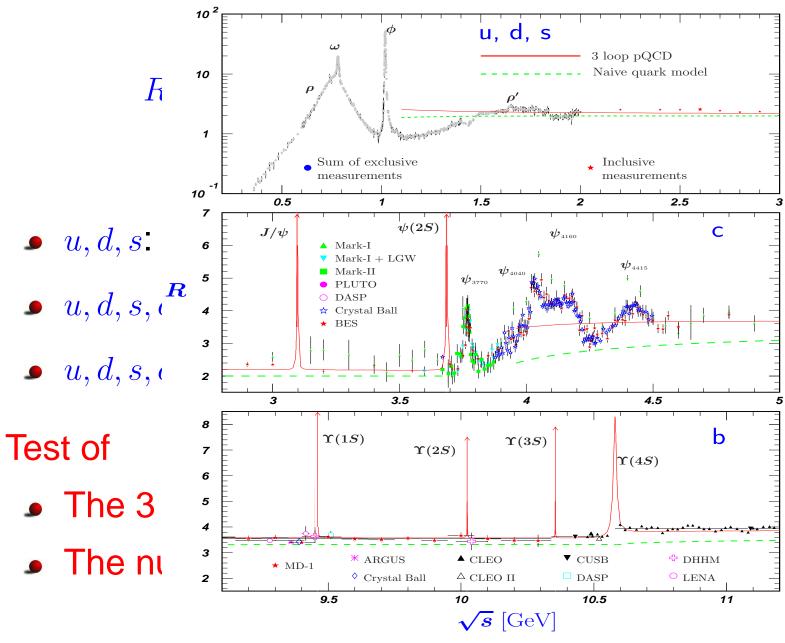
$$R = \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^+e^- \to \mu^+\mu^-)} \approx N_c \left(\sum_q e_q^2\right)$$

- u, d, s: $R = 3\left(\frac{4}{9} + \frac{1}{9} + \frac{1}{9}\right) = 2$
- u, d, s, c: $R = 3\left(\frac{4}{9} + \frac{1}{9} + \frac{1}{9} + \frac{4}{9}\right) = \frac{10}{3}$
- u, d, s, c, b: $R = 3\left(\frac{4}{9} + \frac{1}{9} + \frac{1}{9} + \frac{4}{9} + \frac{4}{9}\right) = \frac{14}{3}$

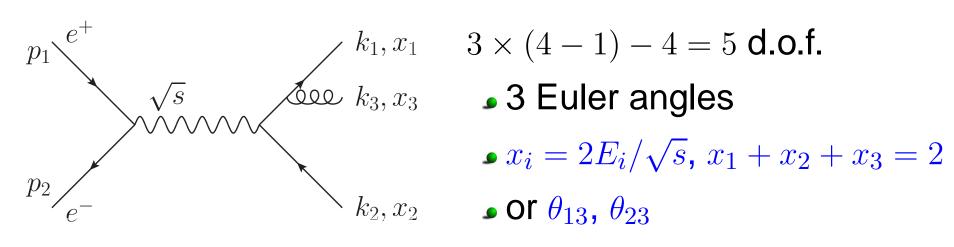
Test of

- The 3 colours in QCD ($N_c = 3$)
- The number of quark flavours





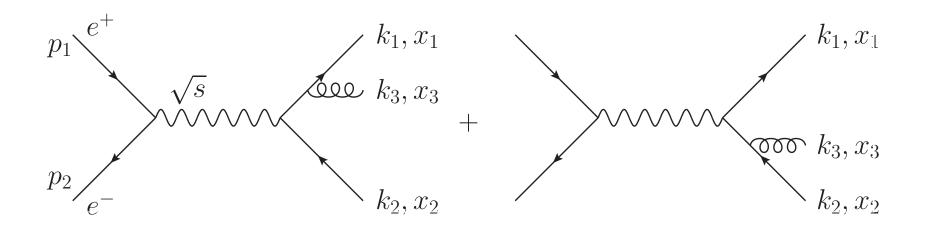
Q: why $\sigma(e^+e^- \to \mu^+\mu^-)$ and not $\sigma(e^+e^- \to e^+e^-)$?



$$3 \times (4-1) - 4 = 5$$
 d.o.f.

$$\int d\Phi_3 = \prod_{i=1}^3 \frac{d^3 k_i}{(2\pi)^3 2E_i} (2\pi)^4 \delta^{(4)}(p_1 + p_2 - k_1 - k_2 - k_3)$$
$$= \frac{s}{32(2\pi)^5} \int d\alpha \, d\cos\beta \, d\gamma \, dx_1 \, dx_2$$

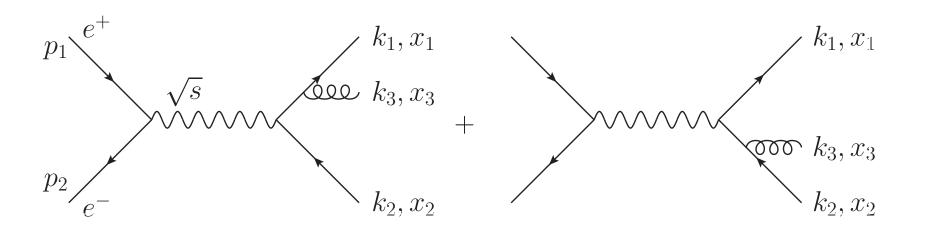
$$\cos(\theta_{13}) = -\frac{x_1^2 + x_3^2 - x_2^2}{2x_1x_3} \qquad \cos(\theta_{23}) = -\frac{x_2^2 + x_3^2 - x_1^2}{2x_2x_3}$$

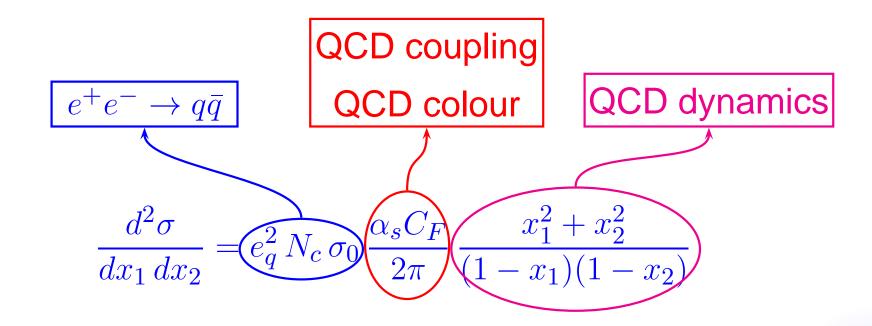


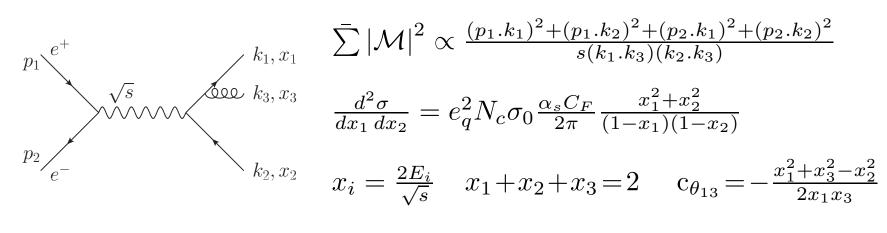
$$\sum |\mathcal{M}|^2 = 4(4\pi)^3 \alpha_e^2 \alpha_s C_F N_c$$

$$\frac{(p_1.k_1)^2 + (p_1.k_2)^2 + (p_2.k_1)^2 + (p_2.k_2)^2}{s(k_1.k_3)(k_2.k_3)}$$

$$\frac{d^2\sigma}{dx_1 dx_2} = e_q^2 N_c \sigma_0 \frac{\alpha_s C_F}{2\pi} \frac{x_1^2 + x_2^2}{(1 - x_1)(1 - x_2)}$$



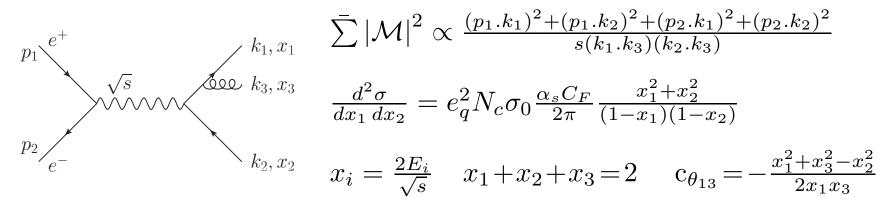




$$\bar{\sum} |\mathcal{M}|^2 \propto \frac{(p_1.k_1)^2 + (p_1.k_2)^2 + (p_2.k_1)^2 + (p_2.k_2)^2}{s(k_1.k_3)(k_2.k_3)}$$

$$\frac{d^2\sigma}{dx_1 dx_2} = e_q^2 N_c \sigma_0 \frac{\alpha_s C_F}{2\pi} \frac{x_1^2 + x_2^2}{(1 - x_1)(1 - x_2)}$$

$$x_i = \frac{2E_i}{\sqrt{s}}$$
 $x_1 + x_2 + x_3 = 2$ $c_{\theta_{13}} = -\frac{x_1^2 + x_3^2 - x_3^2}{2x_1 x_3}$



$$\bar{\sum} |\mathcal{M}|^2 \propto \frac{(p_1.k_1)^2 + (p_1.k_2)^2 + (p_2.k_1)^2 + (p_2.k_2)^2}{s(k_1.k_3)(k_2.k_3)}$$

$$\frac{d^2\sigma}{dx_1 dx_2} = e_q^2 N_c \sigma_0 \frac{\alpha_s C_F}{2\pi} \frac{x_1^2 + x_2^2}{(1 - x_1)(1 - x_2)}$$

$$x_i = \frac{2E_i}{\sqrt{s}}$$
 $x_1 + x_2 + x_3 = 2$ $c_{\theta_{13}} = -\frac{x_1^2 + x_3^2 - x_2^2}{2x_1x_3}$

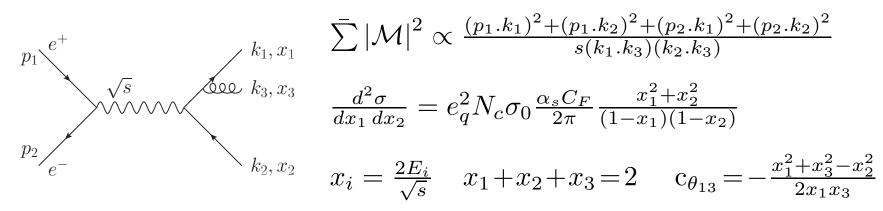
Divergent when $k_1.k_3 \rightarrow 0$ or $k_2.k_3 \rightarrow 0$

$$k_1.k_3 \to 0 \Rightarrow (k_1 + k_3)^2 \to 0$$
 i.e.

parent quark propag = $\frac{1}{(k_1 + k_2)^2} \rightarrow \infty$

Physical origin of the divergence! They are infrared divergences $((k_1 + k_3)^2 \rightarrow 0, \text{ not } \infty)$

(one power cancelled by phase-space \Rightarrow log divergence)

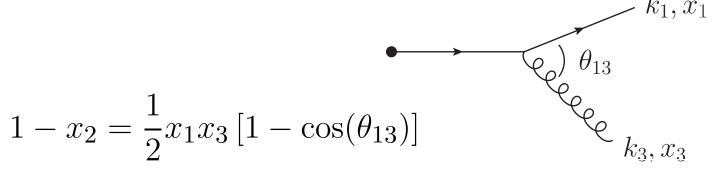


$$\bar{\sum} |\mathcal{M}|^2 \propto \frac{(p_1.k_1)^2 + (p_1.k_2)^2 + (p_2.k_1)^2 + (p_2.k_2)^2}{s(k_1.k_3)(k_2.k_3)}$$

$$\frac{d^2\sigma}{dx_1 dx_2} = e_q^2 N_c \sigma_0 \frac{\alpha_s C_F}{2\pi} \frac{x_1^2 + x_2^2}{(1 - x_1)(1 - x_2)}$$

$$x_i = \frac{2E_i}{\sqrt{s}}$$
 $x_1 + x_2 + x_3 = 2$ $c_{\theta_{13}} = -\frac{x_1^2 + x_3^2 - x_2^2}{2x_1x_3}$

Divergent when x_1 (or x_2) $\to 1$



- $\theta_{13} \to 0$ (or θ_{23}): collinear divergence divergence
- $x_3 \to 0$ (i.e. $E_q \to 0$): soft divergence

Collinear and soft divergences

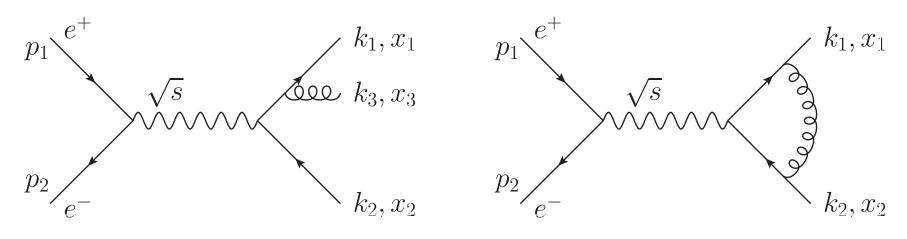
fundamental/omnipresent in QCD! (also in QED)
 we will meet them often through these lectures

Collinear and soft divergences

- fundamental/omnipresent in QCD! (also in QED)
- also present for $g \to gg$ (\neq QED; $C_F \to C_A$)

Collinear and soft divergences

- fundamental/omnipresent in QCD! (also in QED)
- also present for $g \to gg$ (\neq QED; $C_F \to C_A$)
- cancelled by virtual corrections



Real Virtual

Collinear and soft divergences

- fundamental/omnipresent in QCD! (also in QED)
- also present for $g \to gg$ (\neq QED; $C_F \to C_A$)
- cancelled by virtual corrections Dimensional regularisation $d = 4 - 2\varepsilon$:

$$\sigma_{\text{real}}^{(q\bar{q}g)} = e_q^2 N_c \sigma_0 \frac{\alpha_s C_F}{2\pi} T(\epsilon) \left[\frac{2}{\varepsilon^2} + \frac{3}{\varepsilon} + \frac{19}{2} + \mathcal{O}(\varepsilon) \right]$$

$$\sigma_{\text{virt}}^{(q\bar{q}g)} = e_q^2 N_c \sigma_0 \frac{\alpha_s C_F}{2\pi} T(\epsilon) \left[\frac{-2}{\varepsilon^2} - \frac{3}{\varepsilon} - 8 + \mathcal{O}(\varepsilon) \right]$$

$$\sigma_{\mathcal{O}(\alpha_s)}^{(q\bar{q}g)} = e_q^2 N_c \sigma_0 \frac{3\alpha_s C_F}{4\pi} = e_q^2 N_c \sigma_0 \frac{\alpha_s}{\pi}$$

Collinear and soft divergences

- fundamental/omnipresent in QCD! (also in QED)
- also present for $g \to gg$ (\neq QED; $C_F \to C_A$)
- cancelled by virtual corrections
- cancellation order-by-order in perturbation theory

Block-Nordsieck, Kinoshita-Lee-Nauenberg theorems

Collinear and soft divergences

- fundamental/omnipresent in QCD! (also in QED)
- also present for $g \to gg$ (\neq QED; $C_F \to C_A$)
- cancelled by virtual corrections
- cancellation order-by-order in perturbation theory

Block-Nordsieck, Kinoshita-Lee-Nauenberg theorems

 Terminology issue: 'soft' divergence sometimes called 'infrared' divergence (though both soft and coll are infrared)

QCD final state: IRC safety

Cancellation of divergence not true for any observable

Example: "number of partons in the final state", dP/dn

- LO ($\mathcal{O}(\alpha_s^0)$): $dP/dn = \delta(n-2)$
- NLO ($\mathcal{O}(\alpha_s^1)$):
 - (i) real emission: n=3
 - (ii) virtual correction: n=2

$$\Rightarrow dP/dn = [1 - \infty \alpha_s]\delta(n-2) + \infty \alpha_s \delta(n-3)$$

Cancellation of divergence not true for any observable

Example: "number of partons in the final state", dP/dn

- LO ($\mathcal{O}(\alpha_s^0)$): $dP/dn = \delta(n-2)$
- NLO ($\mathcal{O}(\alpha_s^1)$):
 - (i) real emission: n=3
 - (ii) virtual correction: n=2

$$\Rightarrow dP/dn = [1 - \infty \alpha_s]\delta(n-2) + \infty \alpha_s \delta(n-3)$$

Observables for which cancellation happens are called INFRARED-AND-COLLINEAR SAFE
Necessary for perturbative QCD computation to make sense!!

Observable \mathcal{O} :

$$\mathcal{O} = \sum_{n=0}^{\infty} \int \underbrace{d\Psi_n(k_1, \dots, k_n)}_{\text{phasespace}} \underbrace{\frac{d\sigma}{d\Psi_n}(k_1, \dots, k_n)}_{\text{matrix element}} \underbrace{\mathcal{O}_n(k_1, \dots, k_n)}_{\text{observable}}$$

IR safety: "adding a soft particle does not change O"

$$\mathcal{O}_{n+1}(k_1,\ldots,k_n,k_{n+1}) \stackrel{k_{n+1}\to 0}{=} \mathcal{O}_n(k_1,\ldots,k_n)$$

 Collinear safety: "a collinear splitting does not change O"

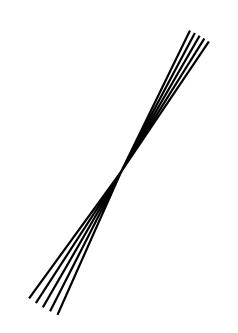
$$\mathcal{O}_{n+1}(k_1,\ldots,\lambda k_n,(1-\lambda)k_n)=\mathcal{O}_n(k_1,\ldots,k_n)$$

for
$$0 < \lambda < 1$$

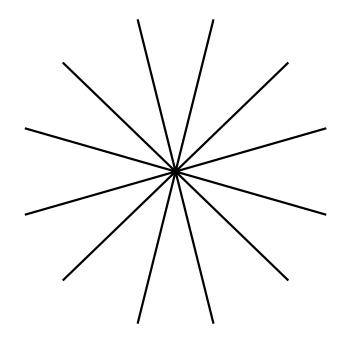
Example #1: event-shapes in e^+e^-

thrust, sphericity, thrust major, thrust minor, ...

Thrust:
$$T_n = \max_{|\vec{u}|=1} \frac{\sum_{i=0}^n |\vec{k}_i . \vec{u}|}{\sum_{i=0}^n |\vec{k}_i|}$$



pencil-like: $T \lesssim 1$



spherical: $T \gtrsim 1/2$

Example #1: event-shapes in e^+e^-

thrust, sphericity, thrust major, thrust minor, ...

Thrust:
$$T_n = \max_{|\vec{u}|=1} \frac{\sum_{i=0}^n |\vec{k_i}.\vec{u}|}{\sum_{i=0}^n |\vec{k_i}|}$$

• the thrust is infrared safe: for $k_{n+1} \to 0$

$$T_{n+1} = \max_{|\vec{u}|=1} \frac{\sum_{i=0}^{n+1} |\vec{k}_i \cdot \vec{u}|}{\sum_{i=0}^{n+1} |\vec{k}_i|} = \max_{|\vec{u}|=1} \frac{\sum_{i=0}^{n} |\vec{k}_i \cdot \vec{u}|}{\sum_{i=0}^{n} |\vec{k}_i|} = T_n$$

the thrust is collinear safe

$$0 < \lambda < 1 \Rightarrow \begin{cases} |\vec{u}.(\lambda \vec{k} + (1 - \lambda)\vec{k})| = |\vec{u}.\vec{k}| \\ |\lambda \vec{k} + (1 - \lambda)\vec{k}| = |\vec{k}| \end{cases}$$

Example #1: event-shapes in e^+e^-

thrust, sphericity, thrust major, thrust minor, ...

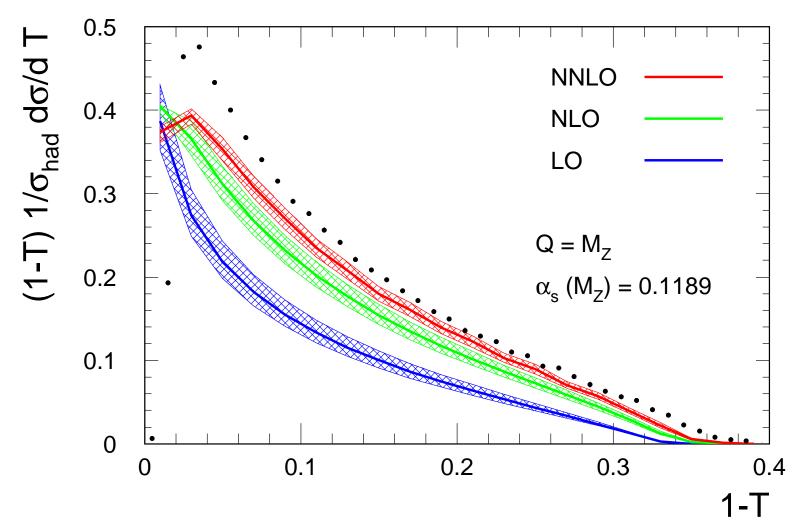
Thrust:
$$T_n = \max_{|\vec{u}|=1} \frac{\sum_{i=0}^n |\vec{k_i}.\vec{u}|}{\sum_{i=0}^n |\vec{k_i}|}$$

Computation in perturbative QCD (from the matrix element given earlier)

$$\frac{1}{\sigma} \frac{d\sigma}{dT} = \frac{\alpha_s C_F}{2\pi} \left[\frac{2(2 - 3T + 3T^2)}{T(1 - T)} \log\left(\frac{2T - 1}{1 - T}\right) - \frac{3(2 - T)(3T - 2)}{1 - T} \right]$$

- Allows for test of QCD (e.g. at LEP)
- "log" is a reminiscence from the soft and collinear divergence

Thrust



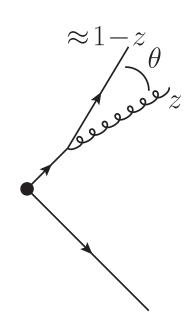
comparison with LEP data: peaked at T=1

e^+e^- : QCD divergences

Typical behaviour of divergences:

Collinear limit:

$$\frac{1}{\sigma_0} d\sigma \approx \underbrace{\frac{\alpha_s}{2\pi} \frac{1 + (1 - z)^2}{z}}_{\text{splitting proba}} \underbrace{\frac{d\theta^2}{\theta^2}}_{\text{coll.div}}$$



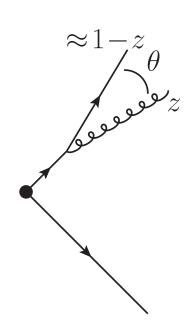
For different situations (different parton types), the branching probability changes but the $d\theta/\theta$ is generic!

e^+e^- : QCD divergences

Typical behaviour of divergences:

Collinear limit:

$$\frac{1}{\sigma_0} d\sigma \approx \underbrace{\frac{\alpha_s}{2\pi} \frac{1 + (1 - z)^2}{z}}_{\text{splitting proba}} \underbrace{\frac{d\theta^2}{\theta^2}}_{\text{coll.div}}$$



Soft limit:

$$d\sigma_{q\bar{q}g} = d\sigma_{q\bar{q}} \frac{\alpha_s C_F}{\pi^2} \frac{(k_1.k_2)}{(k_1.k_3)(k_2.k_3)} d^4k_3 \,\delta(k^2) \,\propto \frac{dE_3}{E_3} \propto \frac{dz}{z}$$

Antenna formula — soft-gluon emission

e^+e^- : QCD divergences

Frequent appearance in computations:

Both soft and collinear divergences are logarithmic

 \Rightarrow the emission of a gluon comes with a factor $\alpha_s \log$

Example:

soft emissions for the thrust : $\alpha_s \log(1-T)$

At some point, $\alpha_s \log \sim 1$ *i.e.* NLO \sim LO in the perturbative series

- \Rightarrow At order n, we will have $\alpha_s^n \log^n$ all of the same order
- ⇒ ALL have to be considered: resummation

Other interests in e^+e^- collisions

Fragmentation functions

"parton ightarrow hadron transition", $D_{p/\pi}(z,p_t)$

Hadronisation

e.g. Lund strings

Jets

Collinear divergence — a parton develops into a bunch of collimated particles

We will postpone (part of) this to the "hadronic collisions" chapter

e^+e^- : Summary

- e^+e^- collisions: good framework to test QCD (final state)
- emission of a gluon has 2 divergences: soft and collinear
 - cancel between "real" and "virtual" daigrams
 - ... provided the observable is IRC safe
 - give rise to "logarithms" in perturbative computations
 - ... resummed to all orders when $\alpha_s \log \sim 1$
 - ... done analytically or by parton cascade MC
- collinear divergence+parton branching → jets

Time for questions!

<interlude hadronic collisions> kinematics jets

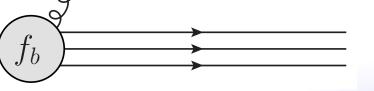
The very fundamental collision

$$\sigma = f_a \otimes f_b \otimes \hat{\sigma}$$

• "take a parton out of each proton" $f_a \equiv \text{parton distribution function (PDF)}^t$

for quark and gluons

 hard matrix element perturbative computation Forde-Feynman rules



Incoming partons:

$$p_1 \equiv x_1 \frac{\sqrt{s}}{2} (0, 0, 1, 1)$$

$$p_2 \equiv x_2 \frac{\sqrt{s}}{2} (0, 0, -1, 1)$$

- carry a fraction of the beam's (longitudinal) momentum
- Energy² in the hard collision: $(p_1 + p_2)^2 = x_1x_2s \le s$
- the partonic centre-of-mass is shifted/boosted compared to the lab/pp centre-of-mass
 ⇒ need variables (longitudinally) boost-invariant

Final-state particles: commonly-used variables

$$k \equiv (k_x, k_y, k_z, E) \equiv E(\sin(\theta)\cos(\phi), \sin(\theta)\sin(\phi), \cos(\theta), 1)$$

• E and θ are not suited!

Final-state particles: commonly-used variables

- Transverse plane
 - ullet azimuthal angle ϕ
 - transverse momentum $p_t = \sqrt{p_x^2 + p_y^2}$

Final-state particles: commonly-used variables

- Transverse plane
 - ullet azimuthal angle ϕ
 - transverse momentum $p_t = \sqrt{p_x^2 + p_y^2}$
- Longitudinal variable

• Rapidity:
$$y = \frac{1}{2} \log \left(\frac{E + p_z}{E - p_z} \right)$$

Boost:
$$y \rightarrow \frac{1}{2} \log \left(\frac{\gamma(E - \beta p_z) + \gamma(p_z - \beta E)}{\gamma(E - \beta p_z) - \gamma(p_z - \beta E)} \right)$$

$$= \frac{1}{2} \log \left(\frac{\gamma(1 - \beta)(E + p_z)}{\gamma(1 + \beta)(E - p_z)} \right) = y + \frac{1}{2} \log \left(\frac{(1 - \beta)}{(1 + \beta)} \right)$$

not boost-invariant itself but $\Delta y = y_2 - y_1$ is ($\Delta \theta$ is not)

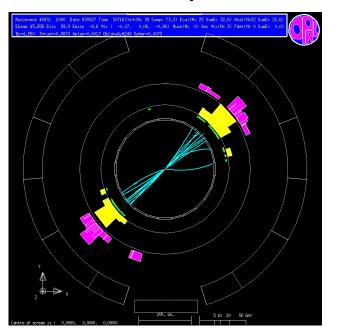
Final-state particles: commonly-used variables

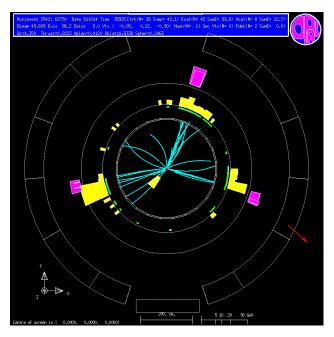
- Transverse plane
 - ullet azimuthal angle ϕ
 - transverse momentum $p_t = \sqrt{p_x^2 + p_y^2}$
- Longitudinal variable
 - Rapidity: $y = \frac{1}{2} \log \left(\frac{E + p_z}{E p_z} \right)$ $k \equiv (k_t \cos(\phi), k_t \sin(\phi), m_t \sinh(y), m_t \cosh(y))$

Transverse mass: $m_t^2 = k_t^2 + m^2$

- Pseudo-rapidity: $\eta = \frac{1}{2}\log\left(\tan(\theta/2)\right)$ $\Delta\eta$ boost-invariant if massless
- For massless particles: $y = \eta$

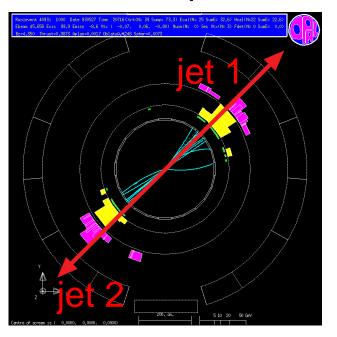
• We have seen in the e^+e^- studies (thrust) that the final state is pencil-like

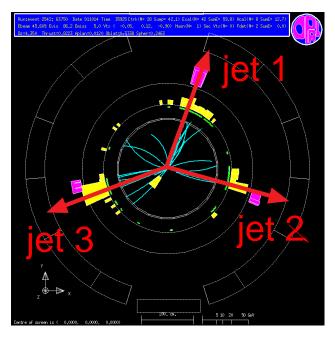




• Consequence of the collinear divergence QCD branchings are most likely collinear $(dP/d\theta \propto \alpha_s/\theta)$

• We have seen in the e^+e^- studies (thrust) that the final state is pencil-like

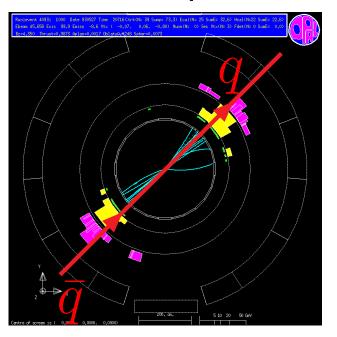


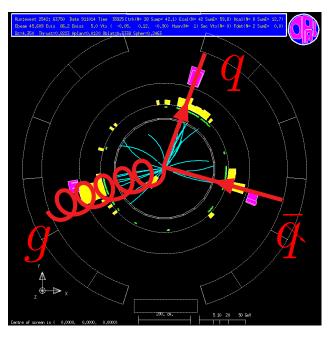


• Consequence of the collinear divergence QCD branchings are most likely collinear $(dP/d\theta \propto \alpha_s/\theta)$

"Jets" \equiv bunch of collimated particles \cong hard partons

• We have seen in the e^+e^- studies (thrust) that the final state is pencil-like



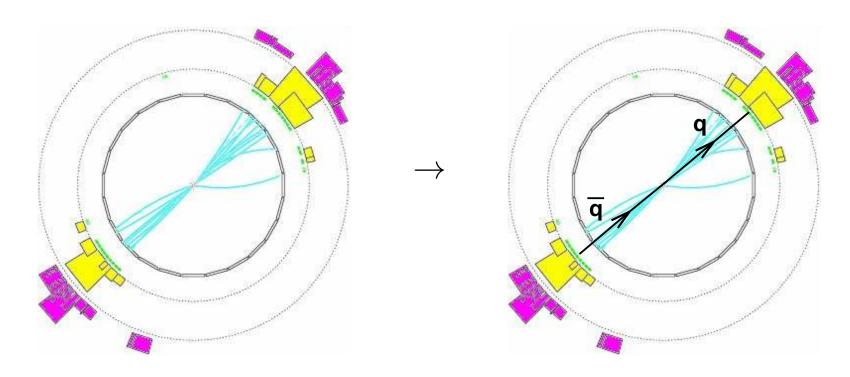


• Consequence of the collinear divergence QCD branchings are most likely collinear $(dP/d\theta \propto \alpha_s/\theta)$

"Jets" \equiv bunch of collimated particles \cong hard partons

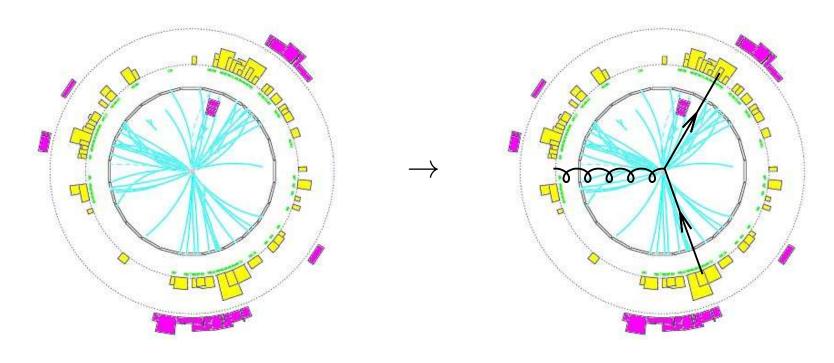
"Jets" \equiv bunch of collimated particles \cong hard partons

obviously 2 jets



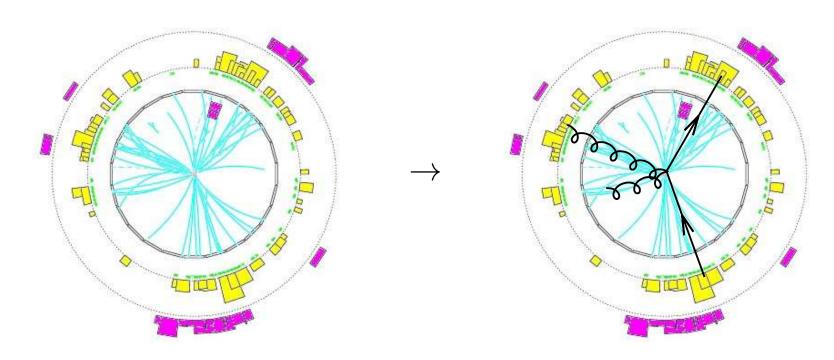
"Jets" \equiv bunch of collimated particles \cong hard partons

3 jets



"Jets" ≡ bunch of collimated particles ≅ hard partons

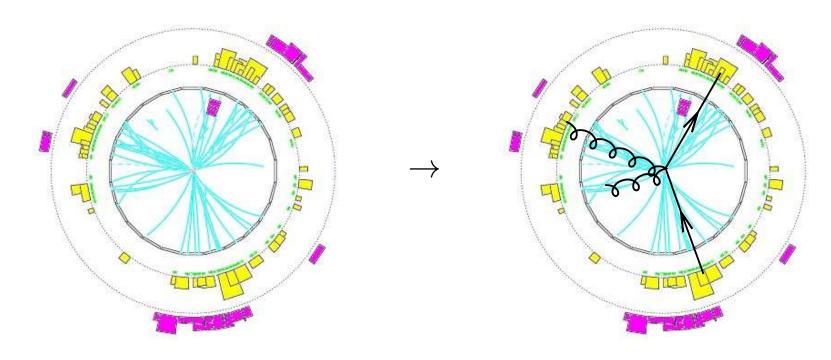
3 jets... or 4?



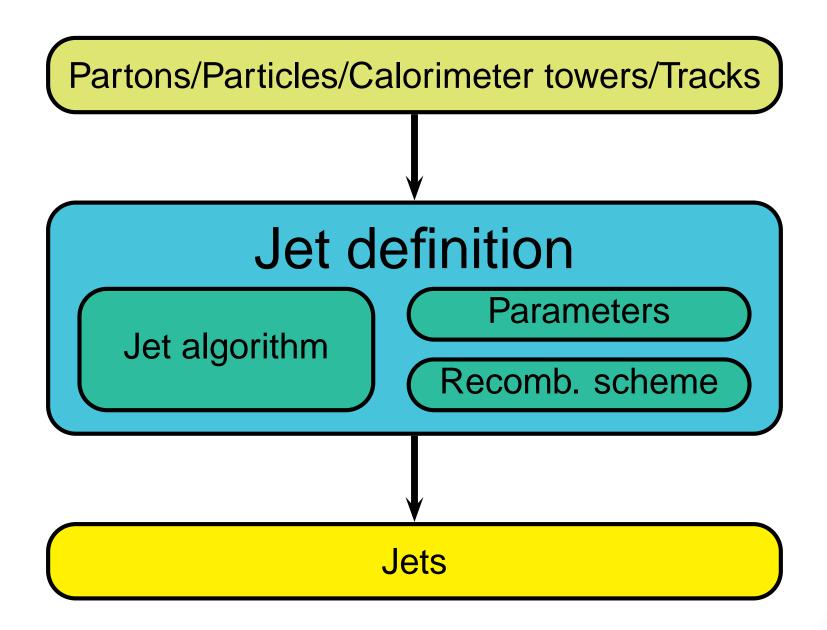
"collinear" is arbitrary

"Jets" \equiv bunch of collimated particles \cong hard partons

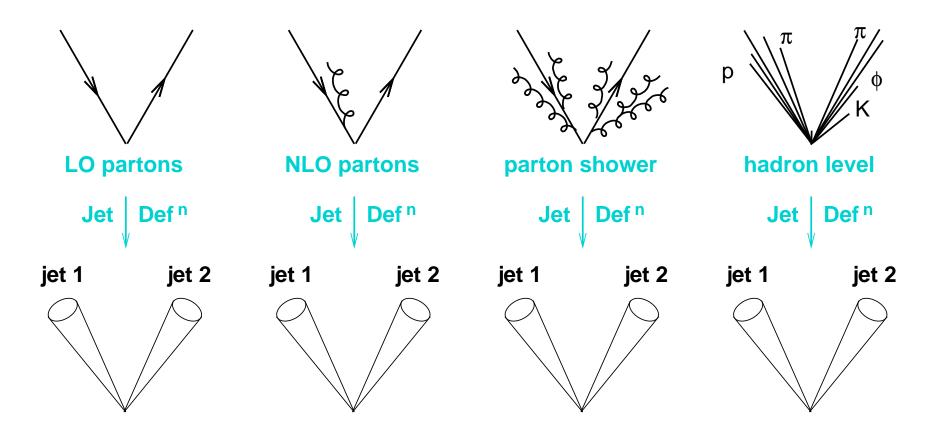
3 jets... or 4?



- "collinear" is arbitrary
- "parton" concept strictly valid only at LO



A jet definiton is supposed to be (as) consistent (as possible) across different view of an event



Jet definitions: constraints

SNOWMASS accords (FermiLab, 1990)

Several important properties that should be met by a jet definition are [3]:

- 1. Simple to implement in an experimental analysis;
- 2. Simple to implement in the theoretical calculation;
- Defined at any order of perturbation theory;
- 4. Yields finite cross section at any order of perturbation theory;
- 5. Yields a cross section that is relatively insensitive to hadronization.

Jet definitions: constraints

SNOWMASS accords (FermiLab, 1990)

Several important properties that should be met by a jet definition are [3]:

- 1. Simple to implement in an experimental analysis;
- 2. Simple to implement in the theoretical calculation;
- 3. Defined at any order of perturbation theory;
- 4. Yields finite cross section at any order of perturbation theory;
- 5. Yields a cross section that is relatively insensitive to hadronization.

30 years later, these are only recently satisfied!!!

Jet definitions: cone

Cone algorithm

- Concept of stable cone as a direction of energy flow
 - "cone": circle of fixed radius R in the (y,ϕ) plane
 - "stable": sum of the particles (4-mom.) inside the cone points in the direction of its centre

Jet definitions: cone

Cone algorithm

- Concept of stable cone as a direction of energy flow
 - "cone": circle of fixed radius R in the (y,ϕ) plane
 - "stable": sum of the particles (4-mom.) inside the cone points in the direction of its centre
- Iterative stable-cone search (aka seeded cone):
 - start from an initial direction (seed) for the cone centre
 - the sum of particles in the cone gives a new direction
 - iterate until stable

Jet definitions: cone

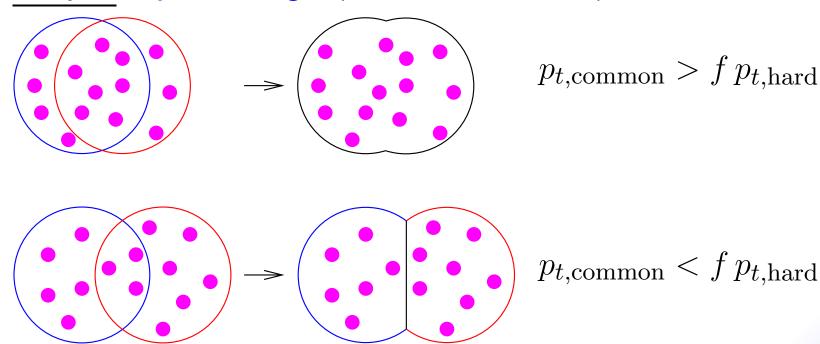
Cone algorithm

- Concept of stable cone as a direction of energy flow
 - "cone": circle of fixed radius R in the (y,ϕ) plane
 - "stable": sum of the particles (4-mom.) inside the cone points in the direction of its centre
- Iterative stable-cone search (aka seeded cone):
 - start from an initial direction (seed) for the cone centre
 - the sum of particles in the cone gives a new direction
 - iterate until stable
- Stable cones ≡ jets ... up to overlaps!

Jet definitions: cone with SM

Cone algorithm: (1) cone with split-merge

- Step 1: find the stable cones with the seeds
 - 1. input particles (over a seed threshold)
 - 2. midpoints of the stable cones found above
- Step 2: split—merge (with threshold f)



Jet definitions: cone with SM

Cone algorithm: (1) cone with split-merge

- Step 1: find the stable cones with the seeds
 - 1. input particles (over a seed threshold)
 - 2. midpoints of the stable cones found above
- Step 2: split—merge (with threshold f)

Examples: main algorithm at the Tevatron

- CDF JetClu (1)
- CDF MidPoint (1+2)
- D0 Run II Cone (1+2)
- ATLAS Cone (1)

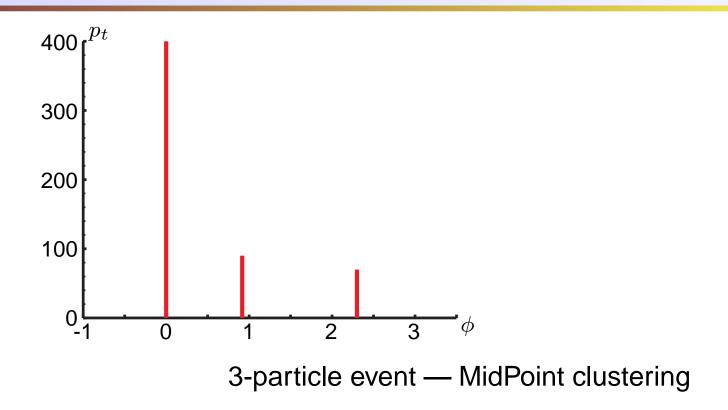
Jet definitions: cone with SM

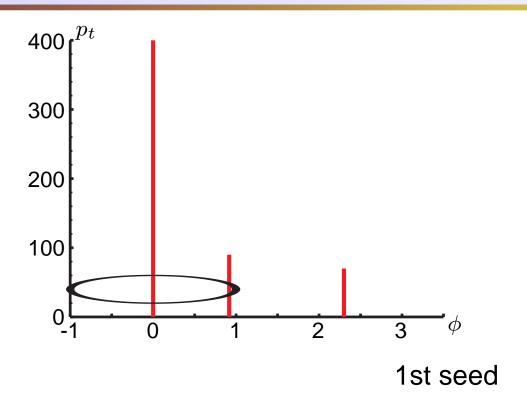
Cone algorithm: (1) cone with split—merge

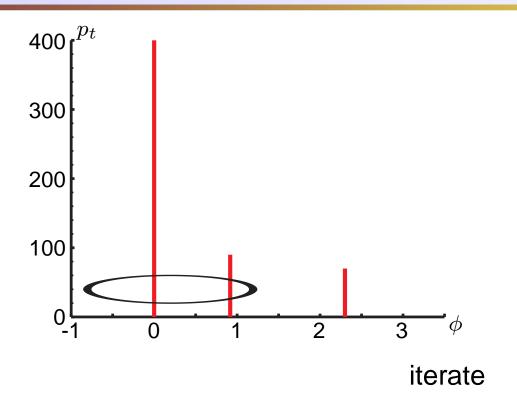
- Step 1: find the stable cones with the seeds
 - 1. input particles (over a seed threshold)
 - 2. midpoints of the stable cones found above
- Step 2: split—merge (with threshold f)

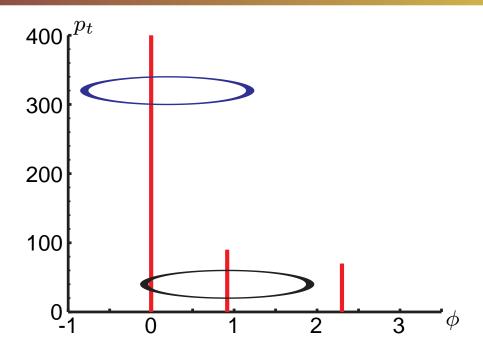
Examples: main algorithm at the Tevatron

- CDF JetClu (1) IR unsafe (2 hard+1 soft)
- CDF MidPoint (1+2) IR unsafe (3 hard+1 soft)
- D0 Run II Cone (1+2) IR unsafe (3 hard+1 soft)
- ATLAS Cone (1) IR unsafe (2 hard+1 soft)

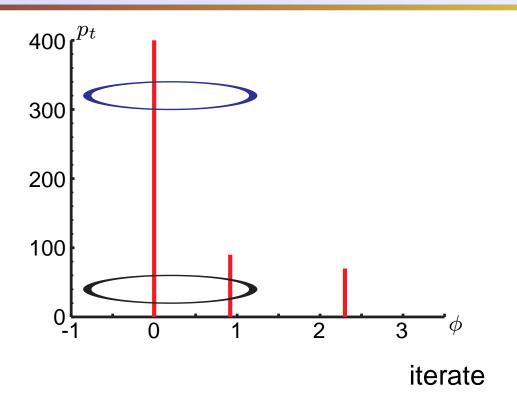


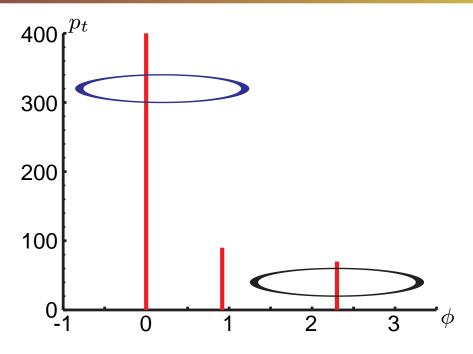




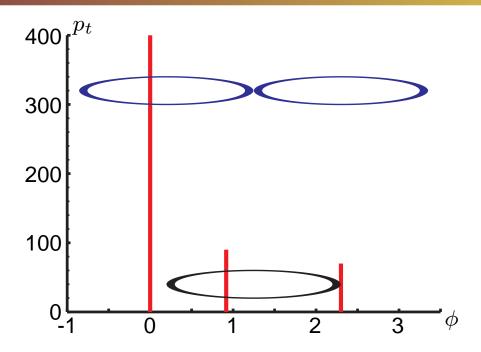


stable; 2nd seed

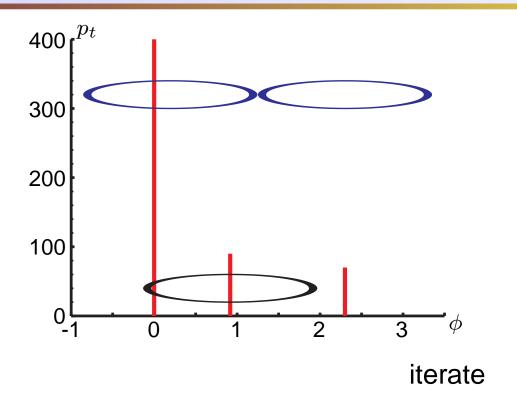


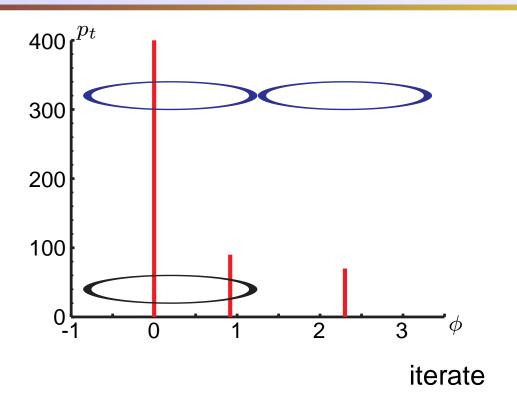


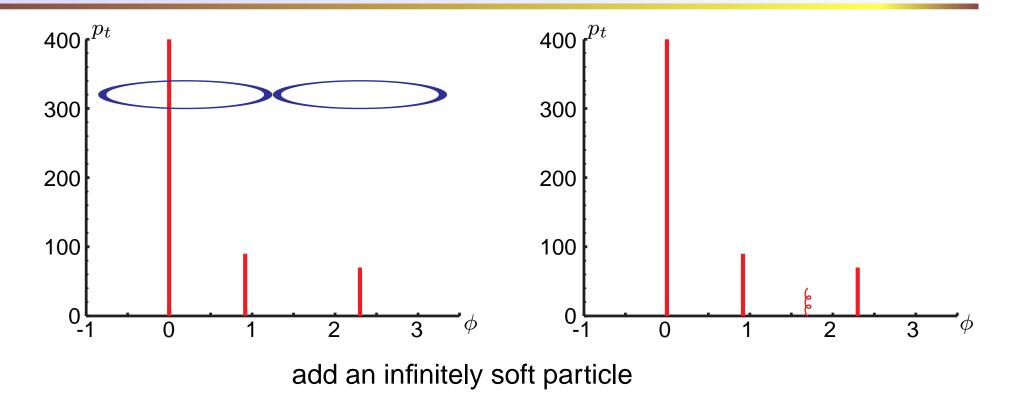
stable; 3rd seed

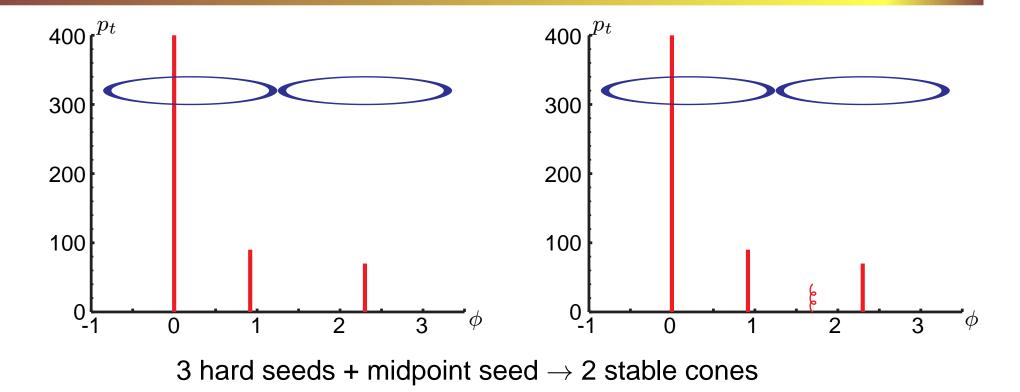


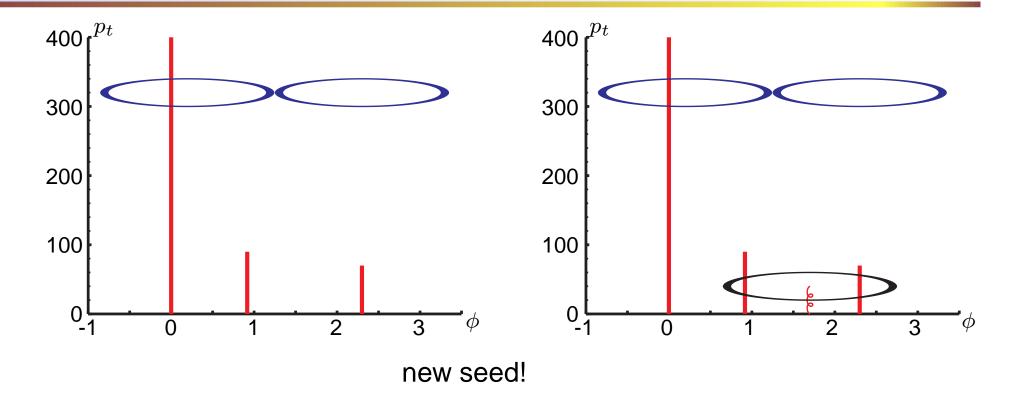
stable; midpoint seed

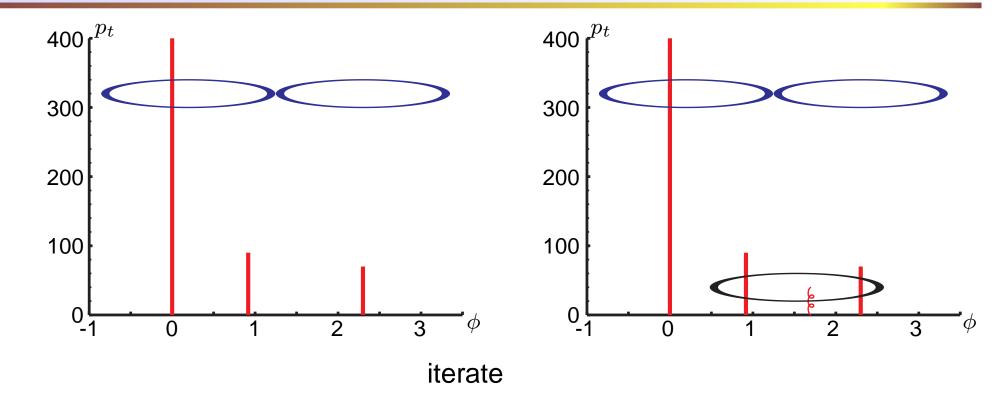


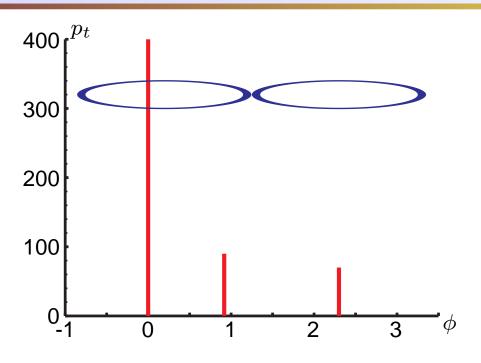


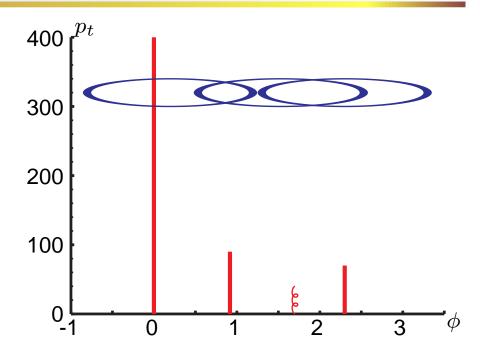










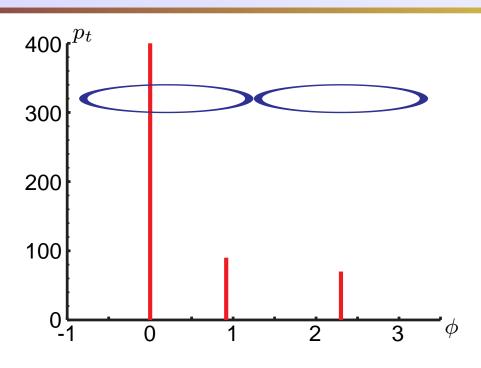


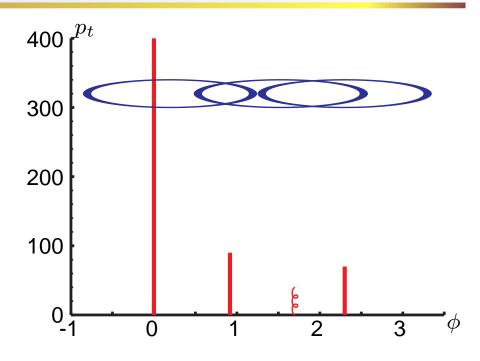
Stable cones:

Midpoint:

{1,2} & {3}

{1,2} & {3} & {2,3}





Stable cones:

Midpoint:

{1,2} & {3}

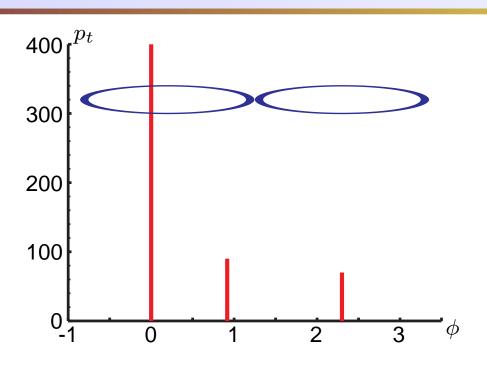
{1,2} & {3} & {2,3}

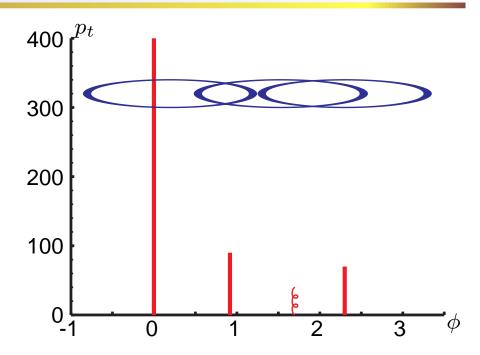
Jets: (f = 0.5)

Midpoint:

{1,2} & {3}

{1,2,3}





Stable cones:

Midpoint:

Seedless:

{1,2} & {3}

{1,2} & {3} & {2,3}

{1,2} & {3} & {2,3}

{1,2} & {3} & {2,3}

Jets: (f = 0.5)

Midpoint:

{1,2} & {3}

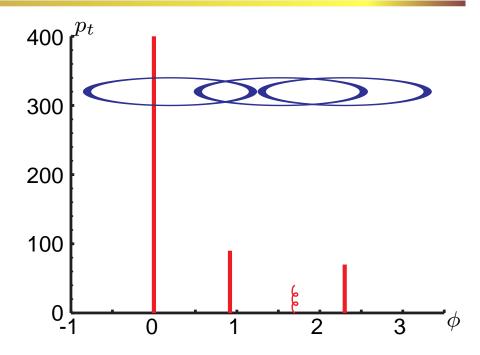
 $\{1,2,3\}$

Seedless:

{1,2,3}

 $\{1,2,3\}$





Stable cones:

Midpoint:

{1,2} & {3}

{1,2} & {3} & {2,3}

Seedless:

{1,2} & {3} & {2,3}

{1,2} & {3} & {2,3}

Jets: (f = 0.5)

Midpoint:

{1,2} & {3}

{1,2,3}

Seedless:

{1,2,3}

 $\{1,2,3\}$

Stable cone missed —> MidPoint is IR unsafe

Jet definitions

Cone algorithm: (1) cone with split-merge

- Step 1: find <u>ALL</u> stable cones in a reasonable time
 - MidPoint: time $\propto N^3$
 - All-Naive: time $\propto 2^N$
 - SISCone: time $\propto N^2 \log(N)$
- Step 2: split—merge (with threshold f)

Example: SISCone Seedless Infrared-Safe Cone

2007!!!

Cone algorithm: (2) cone with progressive removal

Recipe:

- start with the hardest particle as a seed
- iterate to find a stable cone
- stable cone \rightarrow 1st jet
- remove its constituents
- continue with the next hardest particle left

Cone algorithm: (2) cone with progressive removal

- Recipe:
 - start with the hardest particle as a seed
 - iterate to find a stable cone
 - stable cone \rightarrow 1st jet
 - remove its constituents
 - continue with the next hardest particle left
- Benchmark: circular/soft-resilient hard jets

Cone algorithm: (2) cone with progressive removal

- Recipe:
 - start with the hardest particle as a seed
 - iterate to find a stable cone
 - stable cone \rightarrow 1st jet
 - remove its constituents
 - continue with the next hardest particle left
- Benchmark: circular/soft-resilient hard jets
- Example: CMS Iterative Cone

Cone algorithm: (2) cone with progressive removal

- Recipe:
 - start with the hardest particle as a seed
 - iterate to find a stable cone
 - stable cone \rightarrow 1st jet
 - remove its constituents
 - continue with the next hardest particle left
- Benchmark: circular/soft-resilient hard jets
- Example: CMS Iterative Cone BUT Collinear unsafe (3 hard+1 coll.splitting) !!

Jet definition: successive recombinations

Idea: Undo the QCD cascade

- Define an inter-particle distance d_{ij} and a beam distance d_{iB}
- Successively
 - ullet Find the minimum of all d_{ij} , d_{iB}
 - If d_{ij} , recombine $i + j \rightarrow k$ (remove i, j; add k)
 - If d_{iB} , call i a jet (remove i)
- Until all particles have been clustered

Jet definition: successive recombinations

Typical choice of distances:

$$d_{ij}^{2} = \min(k_{t,i}^{2p}, k_{t,j}^{2p})(\Delta y_{ij}^{2} + \Delta \phi_{ij}^{2})$$

$$d_{iB}^{2} = k_{t,i}^{2p} R^{2}$$

- p = 1: k_t algorithm (1993)
- p = 0: Cambridge-Aachen algorithm (1997)
- p=-1: anti- k_t algorithm (2008)

- parameter R (jet separation)
- trivially IRC-safe

Jet definition: successive recombinations

Typical choice of distances:

$$d_{ij}^{2} = \min(k_{t,i}^{2p}, k_{t,j}^{2p})(\Delta y_{ij}^{2} + \Delta \phi_{ij}^{2})$$

$$d_{iB}^{2} = k_{t,i}^{2p} R^{2}$$

- p = 1: k_t algorithm (1993) (as close as possible to pQCD)
- p = 0: Cambridge-Aachen algorithm (1997) (close to pQCD; useful for substructure)
- p = -1: anti- k_t algorithm (2008) (circular/soft-resilient jets; replaces it. cone)

Variants for e^+e^- collisions (+JADE)

Jet definitions: IRC safety matters

As said in e^+e^- : **IRC safety matters** if you want to compare to QCD computations

	Last	OK order		today's
Process	IR_{2+1}	$IR/Coll_{3+1}$	safe	pQCD
Incl. jet x-sect	LO	NLO	any	NLO
W/Z/H+1 jet	LO	NLO	any	NLO
3-jet x-sect	none	LO	any	NLO
W/Z/H+2 jet	none	LO	any	NLO
jet mass in 3-jet	none	none	any	LO

Jet definitions: IRC safety matters

As said in e^+e^- : **IRC safety matters** if you want to compare to QCD computations

	Last	OK order		today's
Process	IR_{2+1}	$IR/Coll_{3+1}$	safe	pQCD
Incl. jet x-sect	LO	NLO	any	NLO
W/Z/H+1 jet	LO	NLO	any	NLO
3-jet x-sect	none	LO	any	NLO
W/Z/H+2 jet	none	LO	any	NLO
jet mass in 3-jet	none	none	any	LO

 \Rightarrow Use an IRC-safe algorithm like k_t , C/A, anti- k_t or SISCone

Jet definitions: comparison

Quick comparison of the algorithms

	k_t	C/A	anti- k_t	SISCone
pQCD	√ √ √	√√√	√ √	√ √
soft (UE)	X	\sim OK	√ √	√√√
speed	/ / /	///	\ \ \ \	√
substruct	√ √	\ \ \ \	X	X
calibr.	√	√	√√√	√ √

Jet clustering: usage/access

FastJet

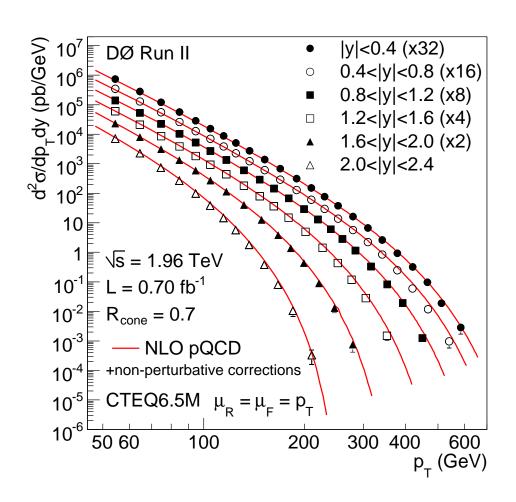
[M.Cacciari, G.Salam, GS]

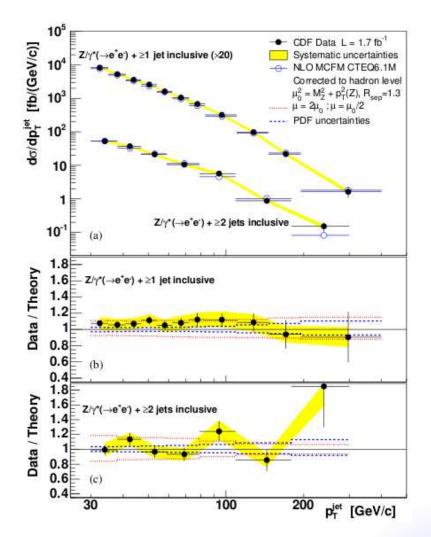
- Fast implementation of recomb. algs $(N \log(N))$
- Plugins for all common algs (SISCone; CDF, D0, ATLAS, CMS algs; e^+e^- algs)
- Other tools (like jet areas)
- More in the tutorial part!

Jets: experimentally

Tevatron
 Use of IR-unsafe JetClu or MidPoint and

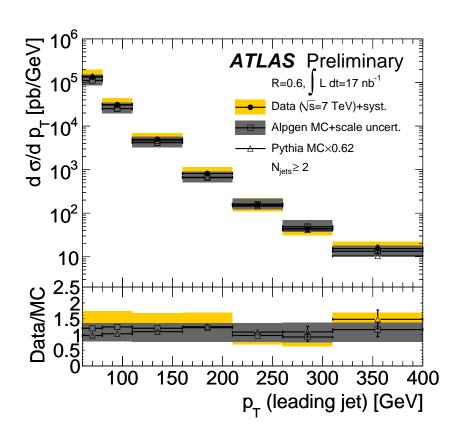
sometimes k_t

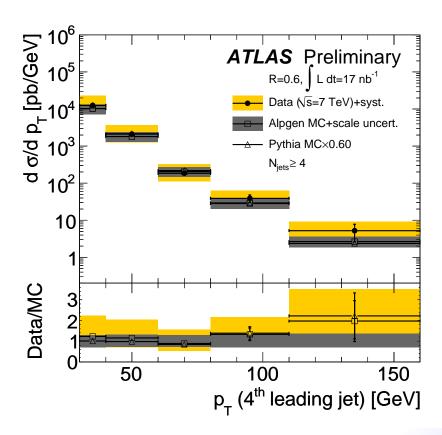




Jets: experimentally

- Tevatron Use of IR-unsafe JetClu or MidPoint and sometimes k_t
- LHC: anti- k_t by default





Jets: hadronic colliders

At hadronic colliders, many "contaminations" to a jet:

- radiation from partons in the initial state
- Underlying event/Multiple interactions
 - shift: UE \approx uniform soft background *i.e.* contamination \propto jet area $\propto R^2$
 - smearing: due to UE fluctuations
 - typical scale: a few GeV
- Pile-up: many pp interactions in 1 bunch-crossing:

$$n \approx \mathcal{L} \, \Delta t_{\text{bunch}} \, \sigma_{pp} \approx 10^{34} \, 25.10^{-9} \, 100.10^{-27} \approx 25$$

Again: shift + smearing

Typical scale: 20-30 GeV

Need for subtraction techniques

</interlude>

The very fundamental collision

$$\sigma = f_a \otimes f_b \otimes \hat{\sigma}$$

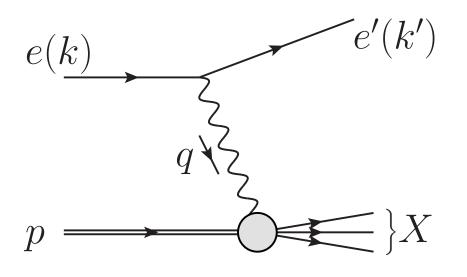
• "take a parton out of each proton" $f_a \equiv \text{parton distribution function (PDF)}$

for quark and gluons

 hard matrix element perturbative computation Forde-Feynman rules

Deep Inelastic Scattering Introduce/Discuss/Study the PDFs

Process + kinematics



$$s = (e + p)^{2}$$

$$W^{2} = (q + p)^{2}$$

$$Q^{2} = -q^{2} > 0$$

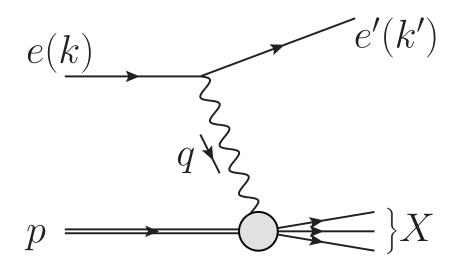
$$\nu = p \cdot q = W^{2} + Q^{2}$$

$$x = Q^{2}/(2\nu)$$

$$y = p \cdot q/p \cdot k = (W^{2} + Q^{2})/s$$

$$ep \rightarrow eX$$
 with γ exchange

- ullet Z and W also possible as well as u instead of e
- also more exclusive meas.: $ep \rightarrow ep$, eXY, eYp, e.g. jets, charm, vector-mesons, photons



$$s = (e + p)^{2}$$

$$W^{2} = (q + p)^{2}$$

$$Q^{2} = -q^{2} > 0$$

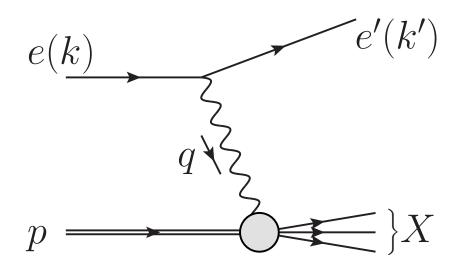
$$\nu = p \cdot q = W^{2} + Q^{2}$$

$$x = Q^{2}/(2\nu)$$

$$y = p \cdot q/p \cdot k = (W^{2} + Q^{2})/s$$

Experimentally: only the outgoing e is needed to reconstruct the kinematics

$$Q^{2} = 4EE'\cos^{2}(\theta_{e}/2)$$
 $x = \frac{EE'\cos^{2}(\theta_{e}/2)}{P[E - E'\sin^{2}(\theta_{e}/2)]}$



$$s = (e + p)^{2}$$

$$W^{2} = (q + p)^{2}$$

$$Q^{2} = -q^{2} > 0$$

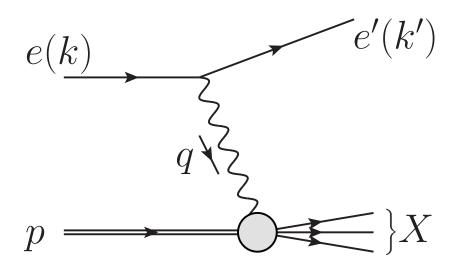
$$\nu = p.q = W^{2} + Q^{2}$$

$$x = Q^{2}/(2\nu)$$

$$y = p.q/p.k = (W^{2} + Q^{2})/s$$

Idea:

use the photon to probe the proton structure Q^2 large \Rightarrow small distance $\sim 1/Q$



$$s = (e + p)^{2}$$

$$W^{2} = (q + p)^{2}$$

$$Q^{2} = -q^{2} > 0$$

$$\nu = p.q = W^{2} + Q^{2}$$

$$x = Q^{2}/(2\nu)$$

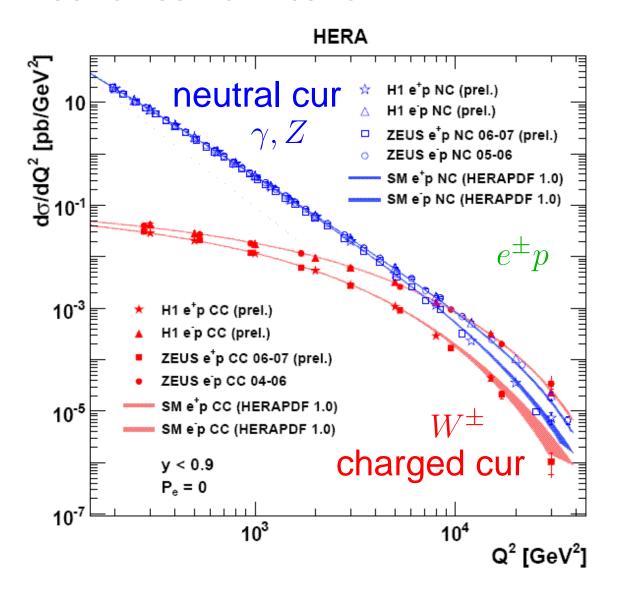
$$y = p.q/p.k = (W^{2} + Q^{2})/s$$

Experiments: most important results rec

most important results recently from HERA at DESY (H1 and ZEUS experiments)

A crystal-clear example

Electroweak unification



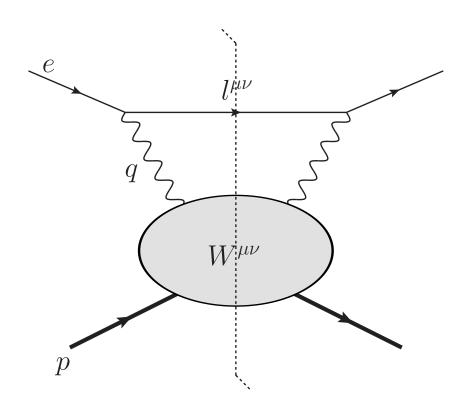
 e^{\pm} total x-sect differential in Q^2

Neutral currents

$$ep \rightarrow eX$$
 via γ, Z

Charged currents

$$ep
ightarrow \nu X$$
 via W^\pm



Factorisation in a leptonic and hadronic part:

$$|\mathcal{M}|^2 = l_{\mu\nu} W^{\mu\nu} \qquad l^{\mu\nu} = 4e^2(k^{\mu}k'^{\nu} + k^{\nu}k'^{\mu} - g^{\mu\nu}k.k')$$

 \longrightarrow study the hadronic tensor $W^{\mu\nu}(W^2,Q^2)$ (or $W^{\mu\nu}(x,Q^2)$)

Hadronic tensor

Most generic structure for $W^{\mu\nu}(x,Q^2)$

$$W^{\mu\nu} = Ag^{\mu\nu} + Bp^{\mu}p^{\nu} + Cq^{\mu}q^{\nu} + Dp^{\mu}q^{\nu} + Eq^{\mu}p^{\nu}.$$

Constraints:

$$W^{\mu\nu}=W^{\nu\mu}$$
 and $q_{\mu}W^{\mu\nu}=0$ (gauge inv.)

Implying

$$W^{\mu\nu} = -\left(g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{Q^2}\right)F_1 + \frac{2x}{Q^2}\left(p^{\mu} + \frac{q^{\mu}}{2x}\right)\left(p^{\nu} + \frac{q^{\nu}}{2x}\right)F_2$$

 $F_1, F_2(x, Q^2)$: proton structure functions

Structure functions

(inclusive) proton interaction fully parametrised by the 2 structure functions F_1 and $F_2(x, Q^2)$

- dimensionless
- $F_L = F_2 2xF_1$ (longitudinally-polarized γ^*)
- For charged currents: additional $F_3(x,Q^2)$

Useful to consider a frame where the proton is highly boosted ($P \gg 1$, p looks like a pancake)

$$p^{\mu} \equiv (0, 0, P, P)$$

$$n^{\mu} \equiv (0, 0, \frac{-1}{2P}, \frac{1}{2P}) \qquad (n^2 = 0, n.p = 1)$$

$$q^{\mu} \equiv q^{\mu}_{\perp} + \nu n^{\mu} \qquad (n.q = 0, \vec{q}^{\,2}_{\perp} = Q^2)$$

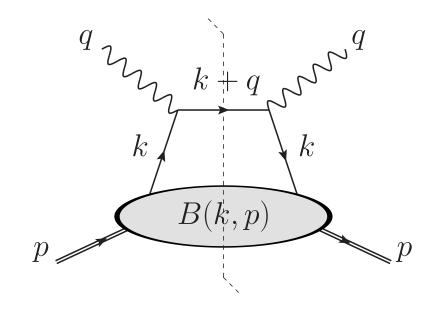
We obtain

$$F_2 = \nu n^{\mu} n^{\nu} W_{\mu\nu}$$

$$F_L = \frac{4x^2}{\nu} p^{\mu} p^{\nu} W_{\mu\nu}$$

Bag model The photon resolves a quark inside the proton

$$k^{\mu} = \xi p^{\mu} + \frac{k^2 + k_{\perp}^2}{2\xi} n^{\mu} + k_{\perp}^{\mu}$$

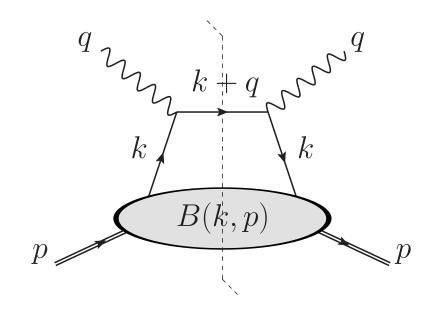


$$W^{\mu\nu} = e_q^2 \int \frac{d^4k}{(2\pi)^4} \text{tr} \left(\gamma^{\mu} (\not k + \not q) \gamma^{\nu} B(k, p) \right) \delta \left((k+q)^2 \right)$$

Bag model The photon resolves

a quark inside the proton

$$k^{\mu} = \xi p^{\mu} + \frac{k^2 + k_{\perp}^2}{2\xi} n^{\mu} + k_{\perp}^{\mu}$$

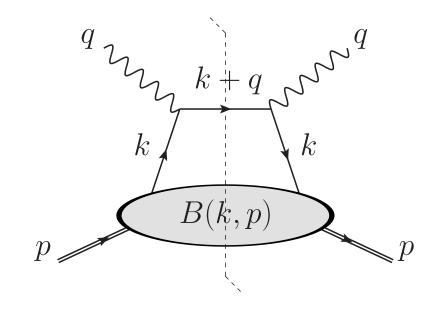


$$F_2 = \nu e_q^2 \int \frac{d^4k}{(2\pi)^4} \text{tr} \left(\eta (k + q) \eta B(k, p) \right) \delta \left((k + q)^2 \right)$$

Bag model

The photon resolves a quark inside the proton

$$k^{\mu} = \xi p^{\mu} + \frac{k^2 + k_{\perp}^2}{2\xi} n^{\mu} + k_{\perp}^{\mu}$$



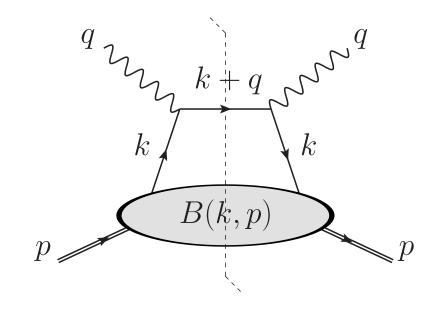
$$F_2 = \nu e_q^2 \int \frac{d^4k}{(2\pi)^4} \text{tr} \left(/\!\!\!/ (k\!\!\!/ + /\!\!\!/) /\!\!\!/ B(k, p) \right) \delta \left((k+q)^2 \right)$$

$$\operatorname{tr}(p(k + p) p B(k, p)) = 2\xi \operatorname{tr}(p B(k, p))$$

Bag model

The photon resolves a quark inside the proton

$$k^{\mu} = \xi p^{\mu} + \frac{k^2 + k_{\perp}^2}{2\xi} n^{\mu} + k_{\perp}^{\mu}$$



$$F_2 = \nu e_q^2 \int \frac{d^4k}{(2\pi)^4} \text{tr} \left(/\!\!\!/ (k\!\!\!/ + /\!\!\!/) /\!\!\!/ B(k, p) \right) \delta \left((k+q)^2 \right)$$

$$\delta\left((k+q)^{2}\right) = \delta\left(k^{2} - Q^{2} + 2\xi\nu - 2\vec{k}_{\perp}^{2}.\vec{q}_{\perp}^{2}\right)$$

$$\stackrel{Q^{2}\gg}{\simeq} \delta(2\nu\xi - Q^{2}) \simeq \frac{1}{2\nu}\delta(\xi - x)$$

Putting everything together:

$$F_2 = xe_q^2 \int \frac{d^4k}{(2\pi)^4} \text{tr} (n/B(k, p)) \, \delta(x - \xi)$$

i.e.

$$F_2 = xe_q^2 q(x)$$
 with $q(x) = \int \frac{d^4k}{(2\pi)^4} \text{tr} (n/\!\!/ B(k,p)) \, \delta(x-\xi)$

with a sum over flavours

$$F_2 = \sum_{q} x e_q^2 [q(x) + \bar{q}(x)]$$

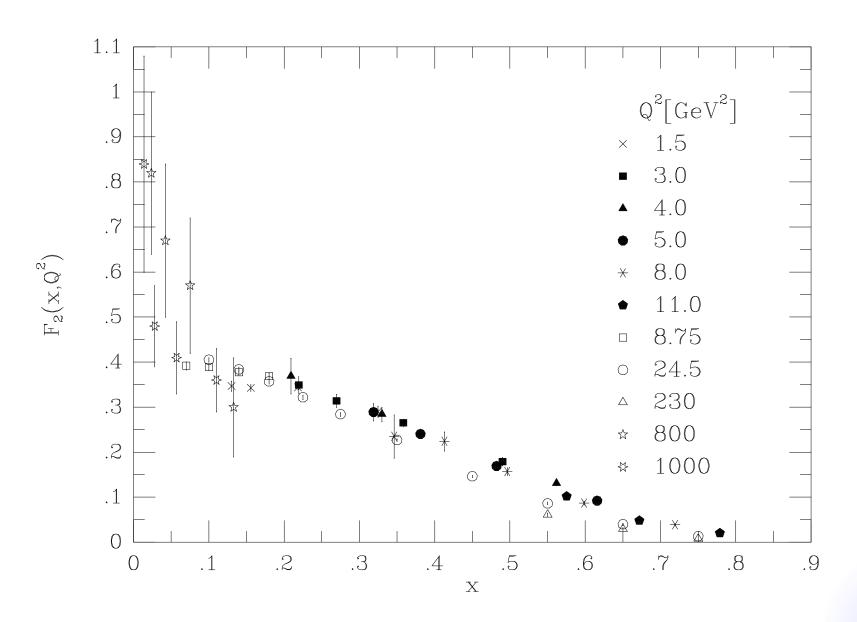
q(x): parton distribution function (PDF)

$$F_2 = \sum_{q} x e_q^2 [q(x) + \bar{q}(x)] \qquad q(x) \equiv \mathsf{PDF}$$

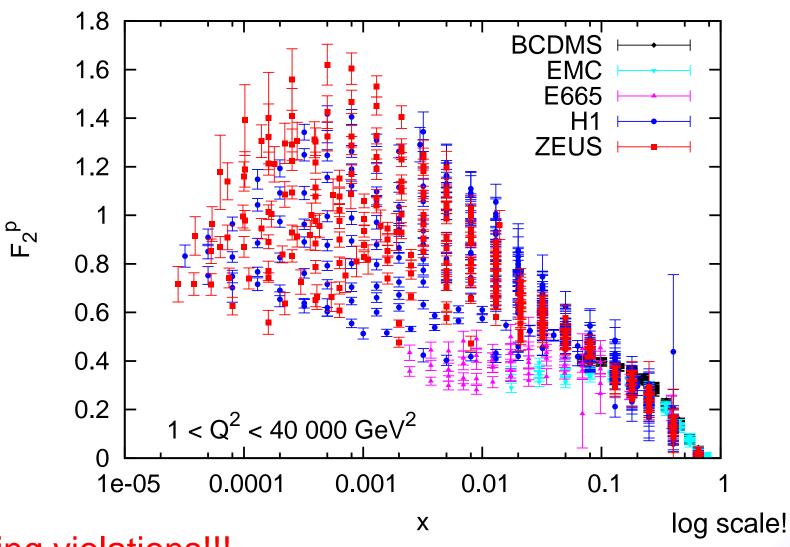
- interpreted as the probability density to find a quark carrying a fraction x of the proton's momentum (universal!!)
- $F_2(x,Q^2) = F_2(x)$: Q^2 -independent. Bjorken scaling
- F_L suppressed by $1/Q^2$ compared to F_2 $F_2 = 2xF_1$. Calan-Gross relation: spin 1/2 for q
- charged currents: different quark combinations

Bjorken scaling

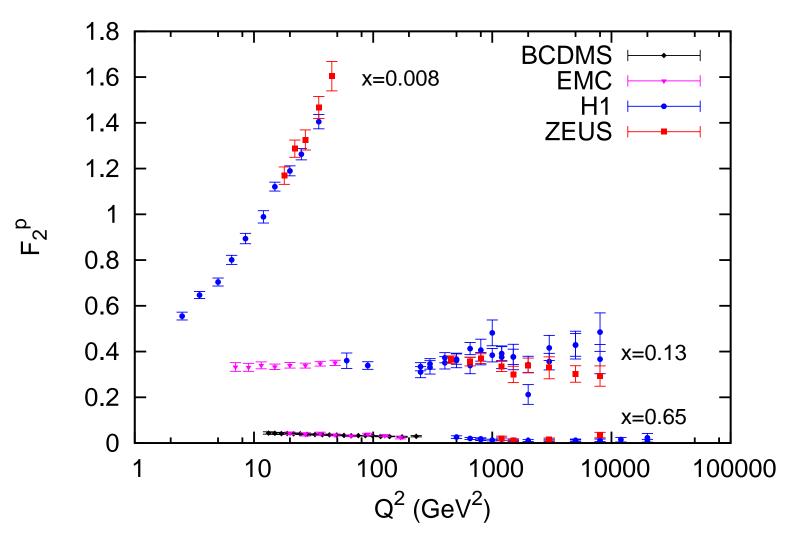
F_2 from BCDMS, SLAC, NMC, H1 and ZEUS (~ 1990)



HERA measurements ($\sim 1993 - 2007$)



A closer look for 3 bins in x

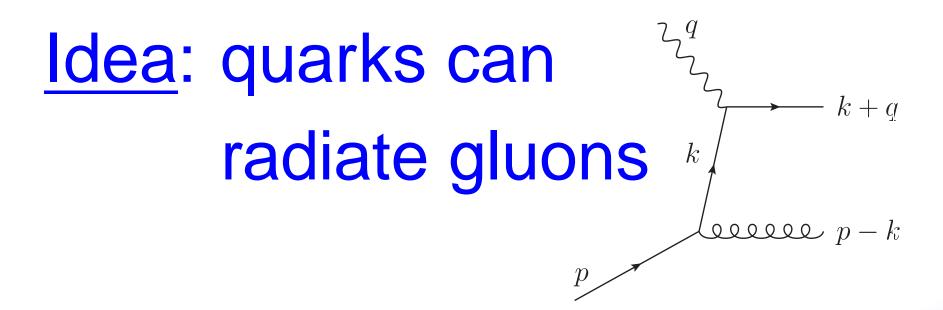


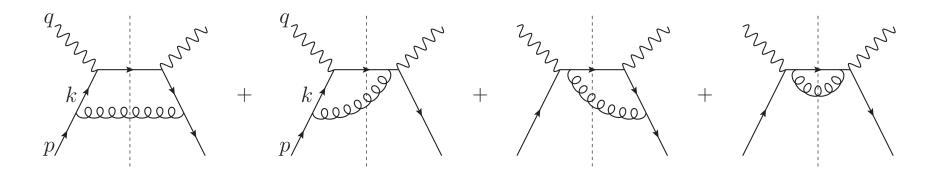
decrease at large x

(strong) rise at small x

Can we describe the scaling violations in QCD?

Can we describe the scaling violations in QCD?





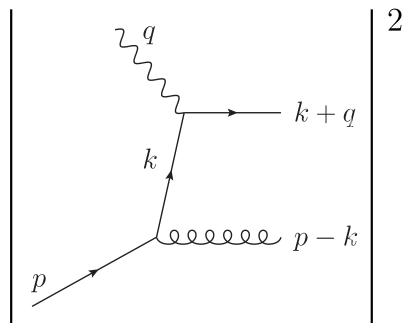
4 graphs to compute

Work in an axial gauge n.A = 0 (recall $n^2 = 0$, n.p = 1, n.q = 0):

gluon of mom k^{μ} has propagator

$$d^{\mu\nu}(k) = \left(-g^{\mu\nu} + \frac{n^{\mu}k^{\nu} + k^{\mu}n^{\nu}}{n \cdot k}\right) \frac{1}{k^2}$$

$$k^{\mu} = \xi p^{\mu} + \frac{k_{\perp}^{2} - |k^{2}|}{2\xi} n^{\nu} + k_{\perp}^{\mu}$$
$$p \equiv (0, 0, P, P)$$



$$n^{\mu}n^{\nu}\sum_{k=0}^{\infty}|\mathcal{M}|^{2} = \frac{1}{2N_{c}}e_{q}^{2}g^{2}\operatorname{tr}(t_{a}t^{a})\frac{1}{k^{4}}\operatorname{tr}\left(\psi(k+\phi)\psi k\gamma^{\alpha}\psi\gamma^{\beta}k\right)$$

$$\left[-g^{\alpha\beta} + \frac{n^{\alpha}(p-k)^{\beta} + (p-k)^{\alpha}n^{\beta}}{n.(p-k)}\right]$$

$$= 32\pi e_{q}^{2}\alpha_{s}\frac{\xi P(\xi)}{|k^{2}|} \qquad P(\xi) = C_{F}\frac{1+\xi^{2}}{1-\xi}$$

$$k^{\mu} = \xi p^{\mu} + \frac{k_{\perp}^2 - |k^2|}{2\xi} n^{\nu} + k_{\perp}^{\mu}$$

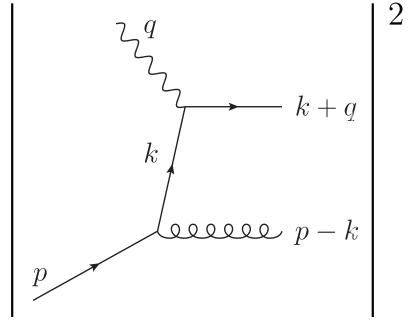
$$P(\xi) = C_F \frac{1 + \xi^2}{1 - \xi}$$

$$\hat{F}_{2} = e_{q}^{2} \frac{\alpha_{s}}{4\pi^{2}} \int d\xi \, \xi P(\xi) \int \frac{d|k^{2}|}{|k^{2}|} \, dk_{\perp}^{2} \, d\theta \, \delta\left((p-k)^{2}\right) \delta\left((k+q)^{2}\right)$$

2

$$k^{\mu} = \xi p^{\mu} + \frac{k_{\perp}^2 - |k^2|}{2\xi} n^{\nu} + k_{\perp}^{\mu}$$

$$P(\xi) = C_F \frac{1 + \xi^2}{1 - \xi}$$



$$\hat{F}_{2} = e_{q}^{2} \frac{\alpha_{s}}{4\pi^{2}} \int d\xi \, \xi P(\xi) \int \frac{d|k^{2}|}{|k^{2}|} \, dk_{\perp}^{2} \, d\theta \, \delta\left((p-k)^{2}\right) \delta\left((k+q)^{2}\right)
= e_{q}^{2} \frac{\alpha_{s}}{2\pi^{2}} \int_{0}^{2\nu} \frac{d|k^{2}|}{|k^{2}|} \int_{\xi_{-}}^{\xi_{+}} d\xi \, \frac{\xi P(\xi)}{\sqrt{(\xi_{+} - \xi)(\xi - \xi_{-})}}$$

with
$$\xi_{\pm} = x \pm \mathcal{O}(|k^2|/Q^2)$$

$$\hat{F}_2 = e_q^2 \frac{\alpha_s}{2\pi^2} x P(x) \int_0^{2\nu} \frac{d|k^2|}{|k^2|} = e_q^2 \frac{\alpha_s}{2\pi^2} x P(x) \int_0^{Q^2} \frac{d|k^2|}{|k^2|}$$

- other diagrams suppressed by powers of Q
- only kept the leading terms in Q
- $|k^2|$ integration DIVERGENT!!

$$\hat{F}_2 = e_q^2 \frac{\alpha_s}{2\pi^2} x P(x) \int_0^{2\nu} \frac{d|k^2|}{|k^2|} = e_q^2 \frac{\alpha_s}{2\pi^2} x P(x) \int_0^{Q^2} \frac{d|k^2|}{|k^2|}$$

- other diagrams suppressed by powers of Q
- $|k^2|$ integration DIVERGENT!!

From
$$\delta((p-k)^2)$$
 we get $\vec{k}_{\perp}^{\;2}=(1-\xi)|k^2|$ Thus, $|k^2|\to 0 \Rightarrow \vec{k}_{\perp}\to 0$

This is thus a <u>collinear divergence!</u> The same as we already encountered in e^+e^- collisions.

$$\hat{F}_2 = e_q^2 \frac{\alpha_s}{2\pi^2} x P(x) \int_0^{2\nu} \frac{d|k^2|}{|k^2|} = e_q^2 \frac{\alpha_s}{2\pi^2} x P(x) \int_0^{Q^2} \frac{d|k^2|}{|k^2|}$$

- other diagrams suppressed by powers of Q
- $|k^2|$ integration DIVERGENT!!

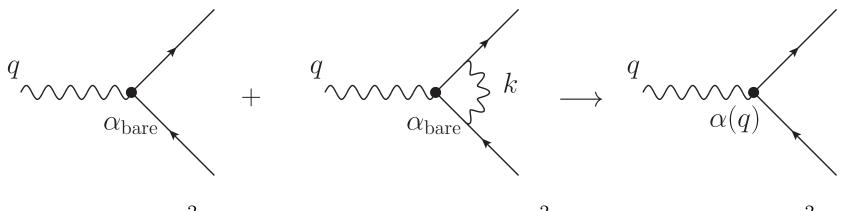
From
$$\delta((p-k)^2)$$
 we get $\vec{k}_{\perp}^{\;2}=(1-\xi)|k^2|$ Thus, $|k^2|\to 0\Rightarrow \vec{k}_{\perp}\to 0$

This is thus a <u>collinear divergence!</u> The same as we already encountered in e^+e^- collisions.

Not cancelled by virtual corrections Here: technique similar to renormalisation

Recall: renormalisation

Vertex correction in QED



$$\alpha + \beta_0 \alpha^2 \int_0^{q^2} \frac{dk^2}{k^2} = \alpha + \beta_0 \alpha^2 \int_0^{\mu^2} \frac{dk^2}{k^2} + beta \alpha^2 \int_{\mu^2}^{q^2} \frac{dk^2}{k^2}$$

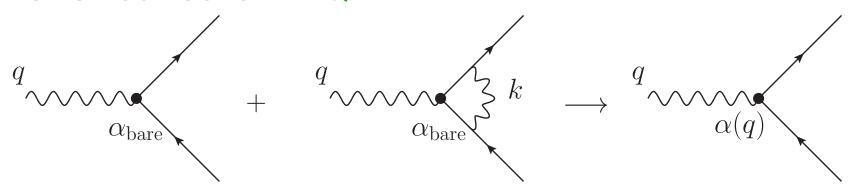
$$\rightarrow \alpha(\mu^2) + \beta_0 \alpha^2 \int_{\mu^2}^{q^2} \frac{dk^2}{k^2}$$

$$\rightarrow \alpha(\mu^2) + \beta_0 \alpha^2(\mu^2) \int_{\mu^2}^{q^2} \frac{dk^2}{k^2}$$

$$\rightarrow \alpha(q^2)$$

Recall: renormalisation

Vertex correction in QED

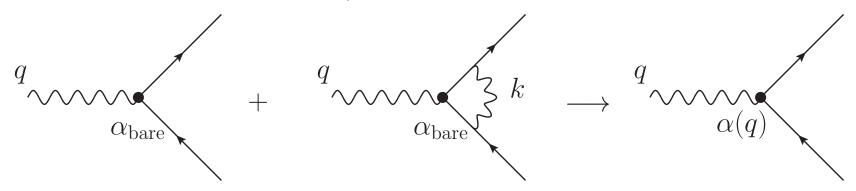


We have defined a scale-dependent coupling

$$\alpha(\mu^2) = \alpha + \beta_0 . \alpha^2 \int_0^{\mu^2} \frac{dk^2}{k^2}$$

Recall: renormalisation

Vertex correction in QED



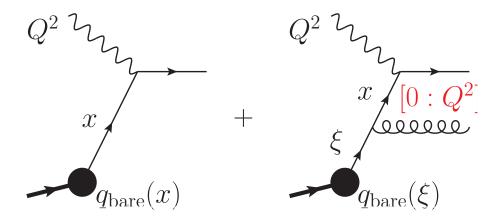
We have defined a scale-dependent coupling

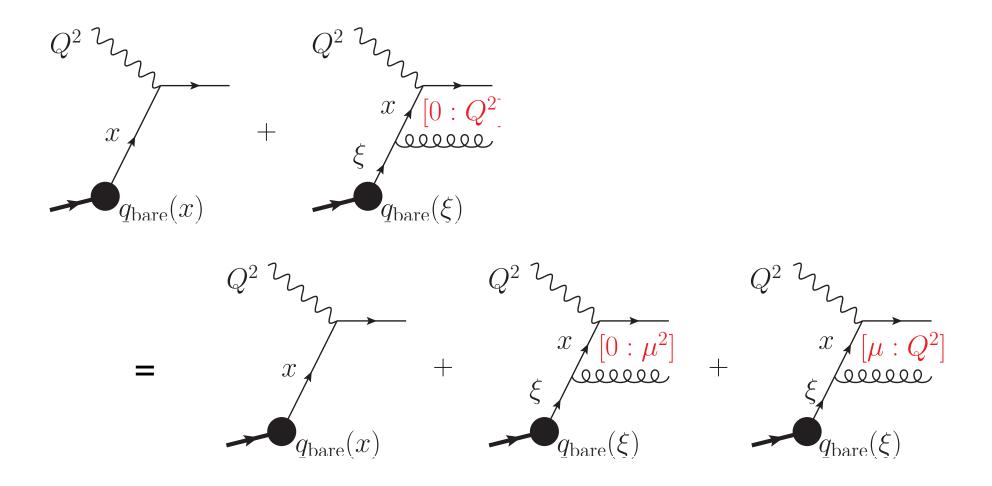
$$\alpha(\mu^2) = \alpha + \beta_0 . \alpha^2 \int_0^{\mu^2} \frac{dk^2}{k^2}$$

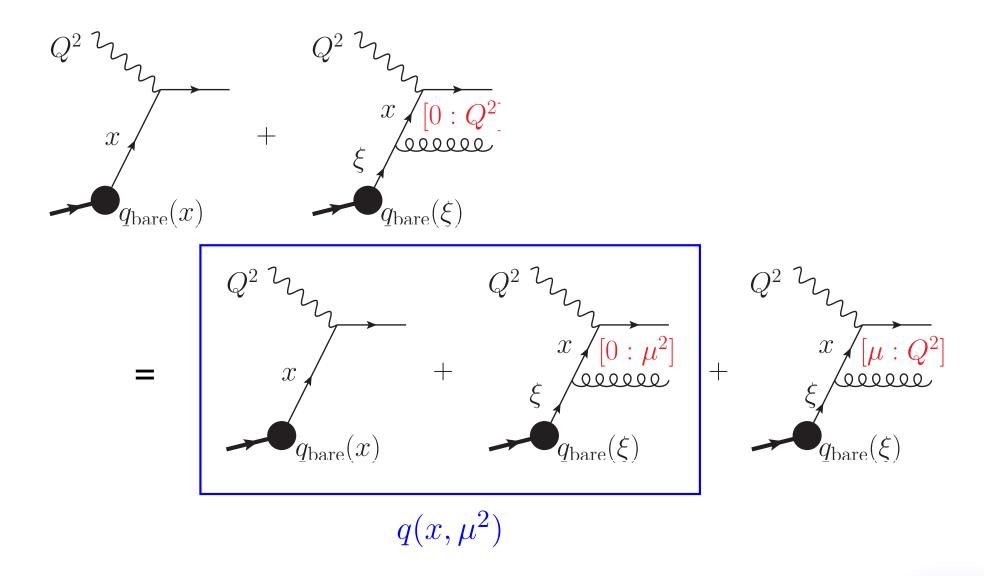
 μ^2 is arbitrary *i.e.* physics should not depend on it

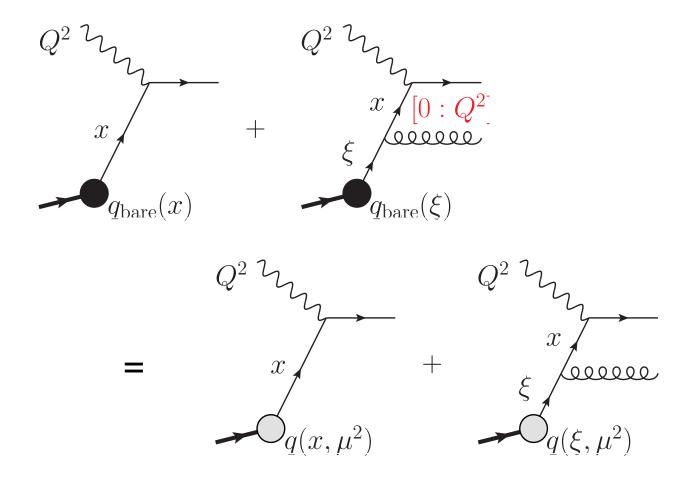
$$\mu^2 \partial_{\mu^2} \alpha(\mu^2) = \beta_0 \alpha^2(\mu^2)$$

renormalisation group equation









$$F_{2}(x,Q^{2}) = xe_{q}^{2} \int_{x}^{1} \frac{d\xi}{\xi} \left[\delta \left(1 - \frac{x}{\xi} \right) + P\left(\frac{x}{\xi} \right) \int_{0}^{Q^{2}} \frac{d|k^{2}|}{|k^{2}|} \right] q_{\text{bare}}(\xi)$$

$$= xe_{q}^{2} \int_{x}^{1} \frac{d\xi}{\xi} \left[\delta \left(1 - \frac{x}{\xi} \right) + P\left(\frac{x}{\xi} \right) \int_{0}^{\mu^{2}} \frac{d|k^{2}|}{|k^{2}|} \right] q_{\text{bare}}(\xi)$$

$$+ xe_{q}^{2} \int_{x}^{1} \frac{d\xi}{\xi} P\left(\frac{x}{\xi} \right) \int_{\mu^{2}}^{Q^{2}} \frac{d|k^{2}|}{|k^{2}|} q_{\text{bare}}(\xi)$$

$$= xe_{q}^{2} \int_{x}^{1} \frac{d\xi}{\xi} \left[\delta \left(1 - \frac{x}{\xi} \right) + P\left(\frac{x}{\xi} \right) \int_{\mu^{2}}^{Q^{2}} \frac{d|k^{2}|}{|k^{2}|} \right] q(\xi, \mu^{2})$$

$$= xe_{q}^{2} q(\xi, Q^{2})$$

$$P(x) = \frac{\alpha_s}{2\pi} C_F \frac{1+x^2}{1-x}$$

We have defined

$$q(x, \mu^2) = q_{\text{bare}}(x) + \int_x^1 \frac{d\xi}{\xi} P\left(\frac{x}{\xi}\right) \int_0^{\mu^2} \frac{d|k^2|}{|k^2|} q_{\text{bare}}(\xi)$$

We have defined

$$q(x, \mu^2) = q_{\text{bare}}(x) + \int_x^1 \frac{d\xi}{\xi} P\left(\frac{x}{\xi}\right) \int_0^{\mu^2} \frac{d|k^2|}{|k^2|} q_{\text{bare}}(\xi)$$

Physics independent of the choice for μ^2

$$\mu^2 \partial_{\mu^2} q(x, \mu^2) = \frac{\alpha_s}{2\pi} \int_x^1 \frac{d\xi}{\xi} P\left(\frac{x}{\xi}\right) q(\xi, \mu^2)$$

DGLAP equation

$$Q^{2}\partial_{Q^{2}}q(x,Q^{2}) = \frac{\alpha_{s}}{2\pi} \int_{x}^{1} \frac{d\xi}{\xi} P\left(\frac{x}{\xi}\right) q(\xi,Q^{2})$$

DGLAP: Dokshitzer-Gribov-Lipatov-Altarelli-Parisi

$$Q^{2}\partial_{Q^{2}}q(x,Q^{2}) = \frac{\alpha_{s}}{2\pi} \int_{x}^{1} \frac{d\xi}{\xi} P\left(\frac{x}{\xi}\right) q(\xi,Q^{2})$$

- DGLAP: Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
- the PDFs get some dependence on Q^2
- Bjorken scaling violations

$$Q^{2}\partial_{Q^{2}}q(x,Q^{2}) = \frac{\alpha_{s}}{2\pi} \int_{x}^{1} \frac{d\xi}{\xi} P\left(\frac{x}{\xi}\right) q(\xi,Q^{2})$$

- DGLAP: Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
- the PDFs get some dependence on Q^2
- Bjorken scaling violations
- μ called the factorisation scale

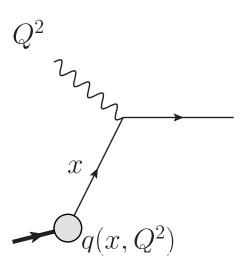
$$Q^{2}\partial_{Q^{2}}q(x,Q^{2}) = \frac{\alpha_{s}}{2\pi} \int_{x}^{1} \frac{d\xi}{\xi} P\left(\frac{x}{\xi}\right) q(\xi,Q^{2})$$

- DGLAP: Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
- the PDFs get some dependence on Q^2
- Bjorken scaling violations
- μ called the factorisation scale
- Leading order computation in $\alpha_s \log(Q^2/\mu^2)$

$$Q^{2}\partial_{Q^{2}}q(x,Q^{2}) = \frac{\alpha_{s}}{2\pi} \int_{x}^{1} \frac{d\xi}{\xi} P\left(\frac{x}{\xi}\right) q(\xi,Q^{2})$$

- DGLAP: Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
- the PDFs get some dependence on Q^2
- Bjorken scaling violations
- μ called the factorisation scale
- Leading order computation in $\alpha_s \log(Q^2/\mu^2)$
- Actually resums all terms $\alpha_s^n \log^n(Q^2/\mu^2)$ (recall: $\alpha_s \log(Q^2/\mu^2) \sim 1 \Rightarrow$ compute at all orders)

$$Q^{2}\partial_{Q^{2}}q(x,Q^{2}) = \frac{\alpha_{s}}{2\pi} \int_{x}^{1} \frac{d\xi}{\xi} P\left(\frac{x}{\xi}\right) q(\xi,Q^{2})$$



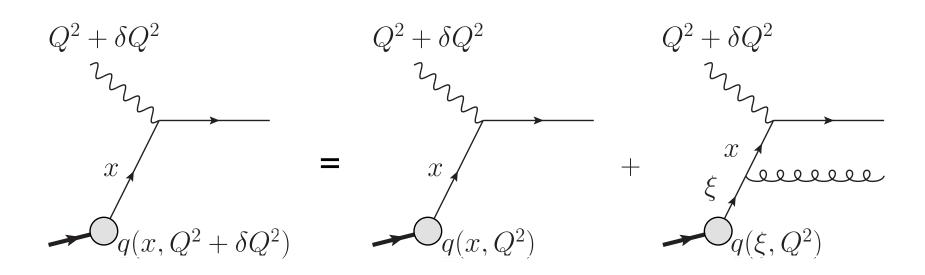
$$Q^{2}\partial_{Q^{2}}q(x,Q^{2}) = \frac{\alpha_{s}}{2\pi} \int_{x}^{1} \frac{d\xi}{\xi} P\left(\frac{x}{\xi}\right) q(\xi,Q^{2})$$

$$Q^{2} + \delta Q^{2}$$

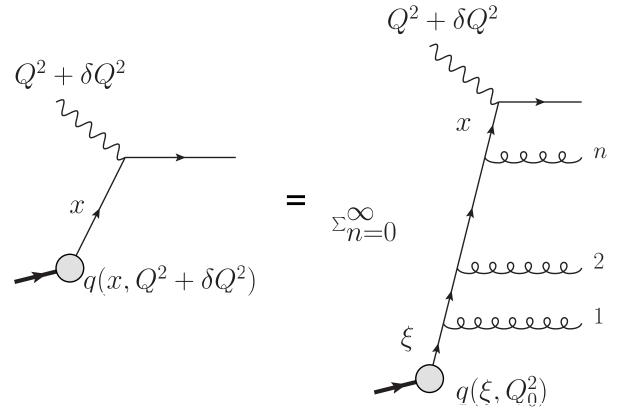
$$x$$

$$q(x, Q^{2} + \delta Q^{2})$$

$$Q^{2}\partial_{Q^{2}}q(x,Q^{2}) = \frac{\alpha_{s}}{2\pi} \int_{x}^{1} \frac{d\xi}{\xi} P\left(\frac{x}{\xi}\right) q(\xi,Q^{2})$$



$$Q^{2}\partial_{Q^{2}}q(x,Q^{2}) = \frac{\alpha_{s}}{2\pi} \int_{x}^{1} \frac{d\xi}{\xi} P\left(\frac{x}{\xi}\right) q(\xi,Q^{2})$$



Resumming (leading) contributions $\alpha_s^n \log^n(Q^2/Q_0^2)$

The DGLAP equation: splitting function

$$Q^{2}\partial_{Q^{2}}q(x,Q^{2}) = \frac{\alpha_{s}}{2\pi} \int_{x}^{1} \frac{d\xi}{\xi} P\left(\frac{x}{\xi}\right) q(\xi,Q^{2})$$

$P(\xi)$ called the splitting function:

transition from a quark of longitudinal momentum xP to a quark of momentum $x\xi P$ with emission of a gluon

The DGLAP equation: splitting function

$$Q^{2}\partial_{Q^{2}}q(x,Q^{2}) = \frac{\alpha_{s}}{2\pi} \int_{x}^{1} \frac{d\xi}{\xi} P\left(\frac{x}{\xi}\right) q(\xi,Q^{2})$$

$P(\xi)$ called the splitting function:

transition from a quark of longitudinal momentum xP to a quark of momentum $x\xi P$ with emission of a gluon

Correction due to virtual-gluon emission:

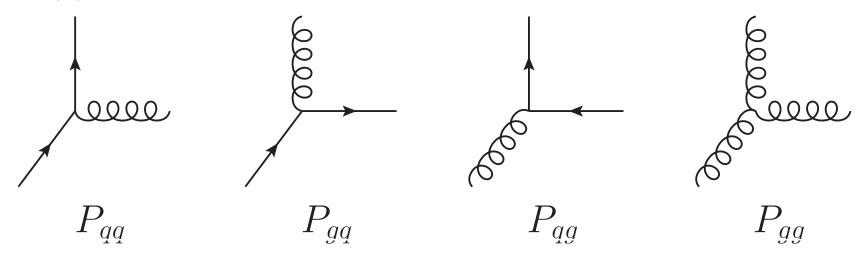
$$P(x) = C_F \left[\frac{1+x^2}{1-x} \right]_+$$

NB: the 1/(1-x) behaviour is the soft QCD divergence

The DGLAP equation: splitting function

$$Q^{2}\partial_{Q^{2}}\left(\begin{array}{c}q(x,Q^{2})\\g(x,Q^{2})\end{array}\right) = \frac{\alpha_{s}}{2\pi}\int_{x}^{1}\frac{d\xi}{\xi}\left(\begin{array}{cc}P_{qq} & P_{qg}\\P_{gq} & P_{gg}\end{array}\right)\left(\frac{x}{\xi}\right)\left(\begin{array}{c}q(\xi,Q^{2})\\g(\xi,Q^{2})\end{array}\right)$$

 $P_{ab}(\xi)$ called the splitting function:



 $P_{ab}(x)$ is the probability to obtain a parton of type a carrying a fraction x of the longitudinal momentum of a parent parton of type b

DGLAP and the factorisation theorem

The result is more general: it holds at any order in perturbation theory

$$Q^{2}\partial_{Q^{2}}q(x,Q^{2}) = \int_{x}^{1} \frac{d\xi}{\xi} P\left(\frac{x}{\xi}\right) q(\xi,Q^{2})$$

with

$$P(x) = \left(\frac{\alpha_s}{2\pi}\right) P^{(0)}(x) + \left(\frac{\alpha_s}{2\pi}\right)^2 P^{(1)}(x) + \left(\frac{\alpha_s}{2\pi}\right)^3 P^{(2x)}(x) + \dots$$

DGLAP and the factorisation theorem

The result is more general: it holds at any order in perturbation theory

$$Q^{2}\partial_{Q^{2}}q(x,Q^{2}) = \int_{x}^{1} \frac{d\xi}{\xi} P\left(\frac{x}{\xi}\right) q(\xi,Q^{2})$$

with

$$P(x) = \underbrace{\left(\frac{\alpha_s}{2\pi}\right)}_{\text{LO}} P^{(0)}(x) + \underbrace{\left(\frac{\alpha_s}{2\pi}\right)^2}_{\text{NLO}} P^{(1)}(x) + \underbrace{\left(\frac{\alpha_s}{2\pi}\right)^3}_{\text{NNLO}} P^{(2)}(x) + \dots$$

- LO resums $\alpha_s^n \log^n(Q^2/\mu^2)$ (leading logarithms)
- NLO resums $\alpha_s^n \log^n(Q^2/\mu^2)$ and $\alpha_s^{n+1} \log^n(Q^2/\mu^2)$

Note: order refers to P; includes diagrams at all orders

Note: known up to NNLO since 2004 (Moch, Vermaseren, Vogt)

DGLAP and the factorisation theorem

The result is more general: it holds at any order in perturbation theory

$$Q^{2}\partial_{Q^{2}}q(x,Q^{2}) = \int_{x}^{1} \frac{d\xi}{\xi} P\left(\frac{x}{\xi}\right) q(\xi,Q^{2})$$

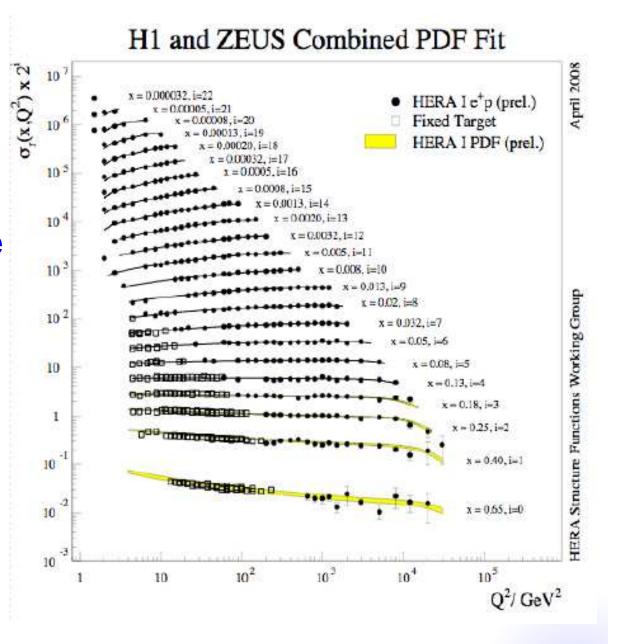
with

$$P(x) = \left(\frac{\alpha_s}{2\pi}\right) P^{(0)}(x) + \left(\frac{\alpha_s}{2\pi}\right)^2 P^{(1)}(x) + \left(\frac{\alpha_s}{2\pi}\right)^3 P^{(2x)}(x) + \dots$$

Fundamental result in QCD know as the factorisation theorem

Collinear divergences can be reabsorbed in the definition of the PDFs at all orders!

Very nice description of the Q^2 -dependence observed in the data



DGLAP only gives the Q^2 evolution of the PDFs One still needs an initial condition $f_a(x, \mu^2)$

Global PDF fit:

- Parametrise q and g at an initial scale μ^2 e.g. $q(x,\mu^2) = x^{\lambda}(1-x)^{\beta}(A+B\sqrt{x}+Cx)$
- Obtain the PDFs $f_a(x,Q^2)$ at all Q^2 using DGLAP
- Compute a series of observables (e.g. F_2)
- Fit the experimental measurements (χ^2 minimisation)

- Many teams: MSTW/MRST, CTEQ, NNPDF, HERA, H1, ZEUS, Alekhin, GRV
- Each with many updates
 e.g. CTEO4I, CTEO4m, CTEO5I

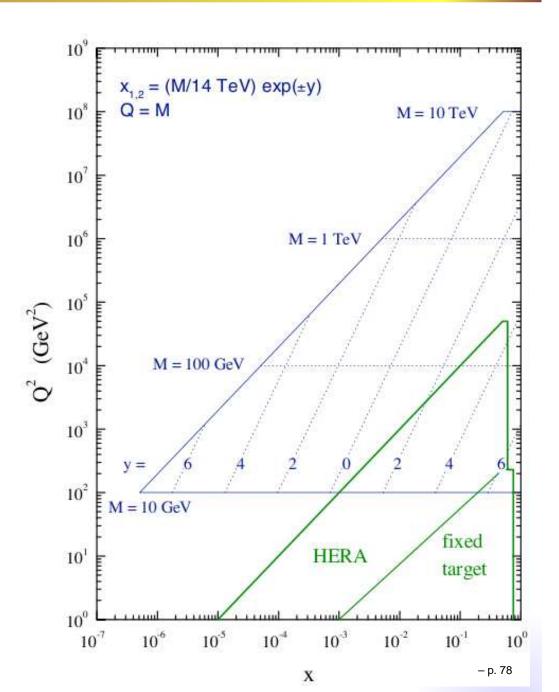
e.g. CTEQ4I, CTEQ4m, CTEQ5I, CTEQ5m, CTEQ6, CTEQ6I, CTEQ6m, CTEQ61, CTEQ65, CTEQ66
MRST98, MRST2001, MRST2002, MRST2003, MRST2004, MRST2006, MRST2007, MSTW2008

- Many teams: MSTW/MRST, CTEQ, NNPDF, HERA, H1, ZEUS, Alekhin, GRV
- Each with many updates
- Points of difference (7):

- Many teams: MSTW/MRST, CTEQ, NNPDF, HERA, H1, ZEUS, Alekhin, GRV
- Each with many updates
- Points of difference (7):
 - Choice of initial scale
 - Choice of initial parametrisation
 - Order of the fit (LO, NLO, NNLO)
 - Data selection (e.g. cuts, old vs. new data)
 - Heavy-flavour treatment
 - Computation of PDFs uncertainties
 - List of observables (9)

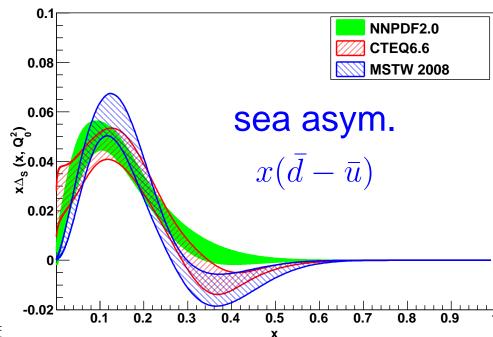
- Many teams: MSTW/MRST, CTEQ, NNPDF, HERA, H1, ZEUS, Alekhin, GRV
- Each with many updates
- Points of difference (7):
 - Choice of initial scale
 - Choice of initial parametrisation
 - Order of the fit (LO, NLO, NNLO)
 - Data selection (e.g. cuts, old vs. new data)
 - Heavy-flavour treatment
 - Computation of PDFs uncertainties
 - List of observables (9) F_2^p , F_2^d , F_L , F_2^ν , F_3^ν , F_2^c , F_2^b , Drell-Yan, Tev. jets

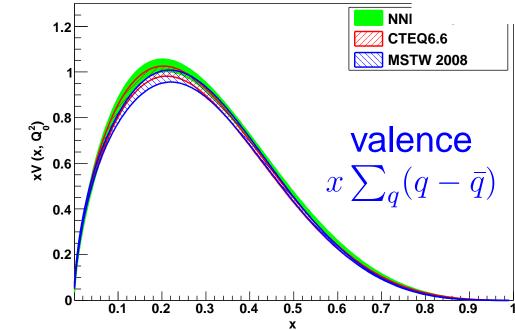
Global fits are important for LHC physics as they affect every perturbative computation



Initial distributions

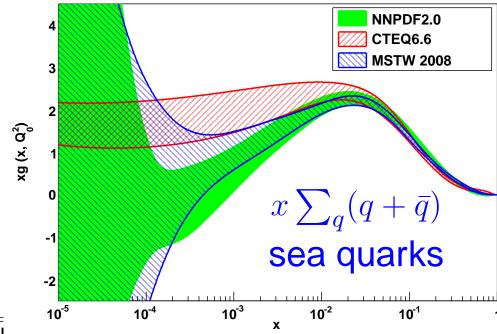
$$Q^2 = \mu^2 = 2 \text{ GeV}$$

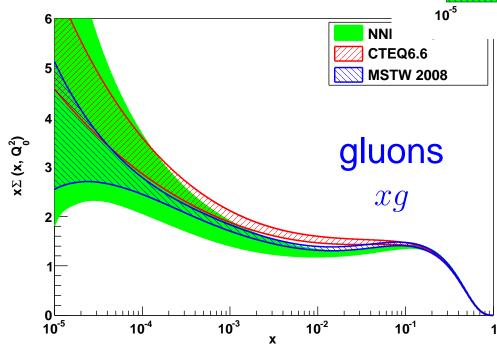




Initial 'flavour-singlet' distributions

$$Q^2=\mu^2=2~{\rm GeV}$$

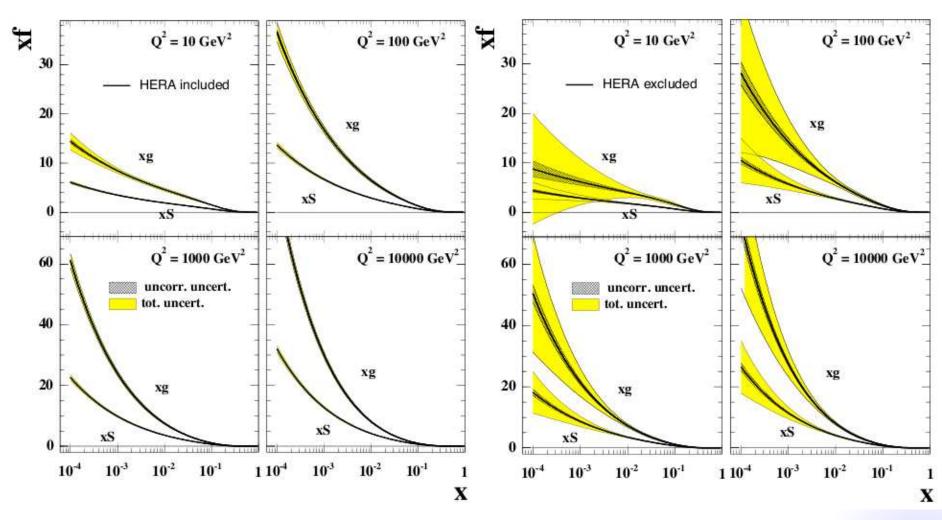


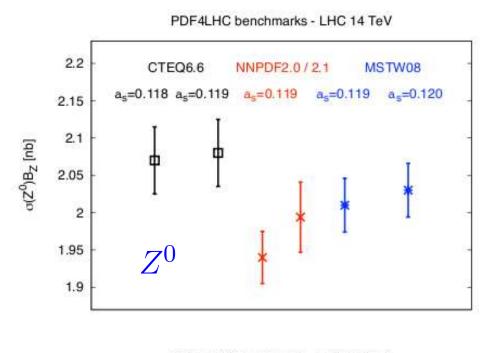


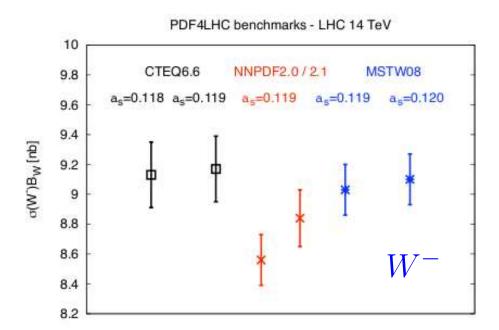
Impact of HERA measurements

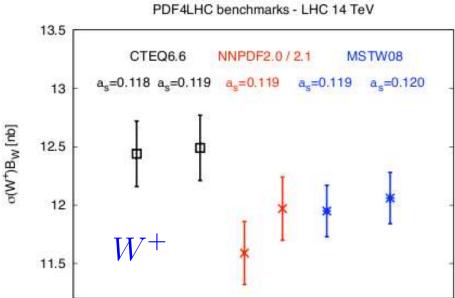
With HERA

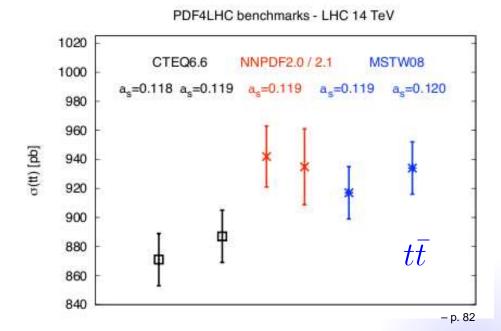
Without HERA











DIS: summary

DIS: $\gamma^* p$ scattering with highly virtual γ ($Q^2 \gg \Lambda_{\rm QCD}^2$)

- Parton model
 - directly probes partons inside the proton
 - Bjorken scaling

DIS: summary

DIS: $\gamma^* p$ scattering with highly virtual γ ($Q^2 \gg \Lambda_{\rm QCD}^2$)

- Parton model
 - directly probes partons inside the proton
 - Bjorken scaling
- QCD collinear divergences
 - Violations of Bjorken scaling
 - Factorisation theorem/DGLAP equation (fundamental result/prediction of QCD)
 - Parton Distribution Functions (PDF)
 - Global fits for the PDF determination of the PDFs: mandatory for precision at the LHC

Time for questions!

pp collisions (at last!)

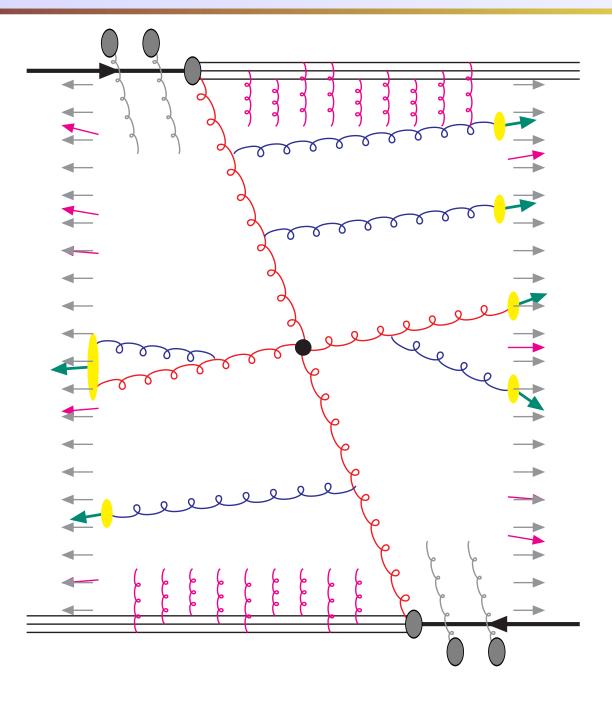
The very fundamental collision

$$\sigma = f_a \otimes f_b \otimes \hat{\sigma}$$

• "take a parton out of each proton" $f_a \equiv \text{parton distribution function (PDF)}$ for quark and gluons a big chapter of these lectures

 hard matrix element perturbative computation Forde-Feynman rules

The more realistic version



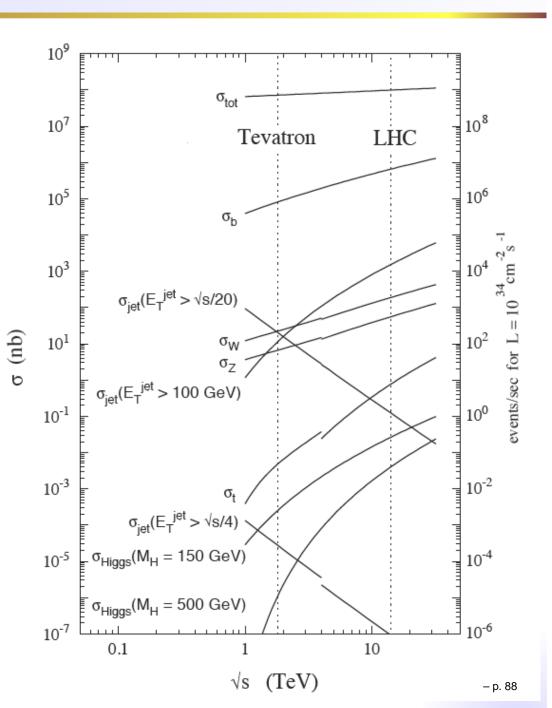
- Hard ME perturbative
- Parton branching initial+final state radiation
- Hadronisation q, g o hadrons
- Multiple interactionsUnderlying event (UE)
- ullet Pile-up \lesssim 25 pp at the LHC

Plan

- A few generic considerations
 - kinematics (done)
 - Monte-Carlo
- Processes one-by-one
 - Drell-Yan
 - Jets (done)
 - W/Z (+jets)
 - top
 - \bullet H
 - SUSY (?)

Plan

- A few generic consident
 - kinematics (done)
 - Monte-Carlo
- Processes one-by-or
 - Drell-Yan
 - Jets (done)
 - W/Z (+jets)
 - top
 - H
 - SUSY (?)



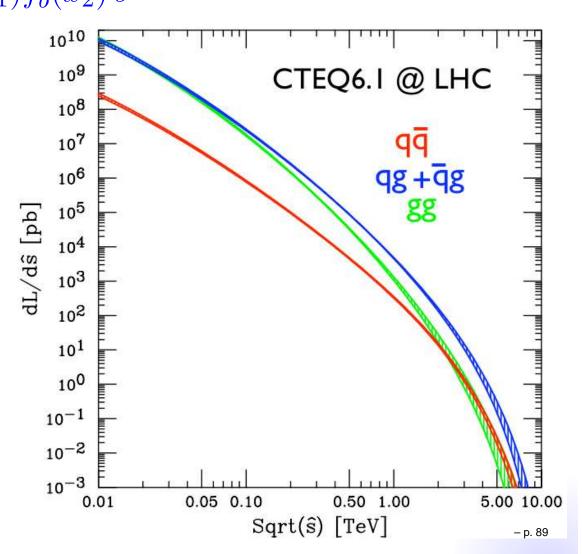
Parton luminosities

Vary $\sqrt{s} \Rightarrow$ same ME, only PDF vary

$$\sigma = \sum_{ij} \int dx_1 \, dx_2 \, f_a(x_1) f_b(x_2) \, \hat{\sigma}$$

$$= \sum_{ij} \int d\hat{s} \, \frac{dL_{ij}}{d\hat{s}} \, \hat{\sigma}(\hat{s})$$

NB: Tevatron: $p\bar{p}$ LHC: pp

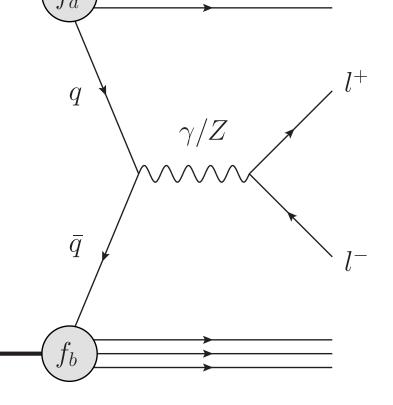


Drell-Yan

Production of a lepton pair (of mass M)

Hard matrix element:

$$\frac{d\hat{\sigma}}{dM^2} = \frac{e_q^2 N_c}{N_c^2} \frac{4\pi\alpha^2}{3M^2} \delta(x_1 x_2 s - M^2)$$



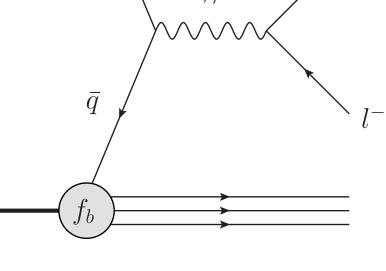
Lowest order (PDF₁ \otimes PDF₂ \otimes ME)

$$\frac{d\sigma}{dM^2} = \int dx_1 \, dx_2 \, \sum_{q} [q(x_1, M^2)\bar{q}(x_2, M^2) + (1 \leftrightarrow 2)] \frac{d\hat{\sigma}}{dM^2}$$

Production of a lepton pair (of mass M)

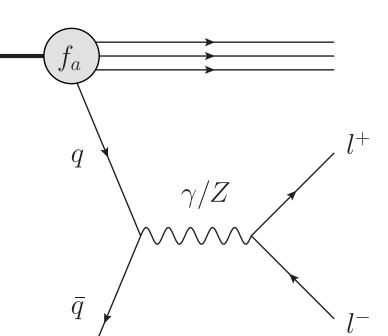
Ex. 1: lepton-pair rapidity (y)

$$\Rightarrow \delta(x_1 x_2 s - M^2)$$
$$\delta(y - \frac{1}{2} \log(x_1/x_2))$$



$$\frac{d^2\sigma}{dM^2dy} = \sum_{q} \frac{4\pi e_q^2 \alpha^2}{3N_c M^2 s} \left[q(\frac{M}{\sqrt{s}} e^y, M^2) \bar{q}(\frac{M}{\sqrt{s}} e^{-y}, M^2) + (y \leftrightarrow -y) \right]$$

Production of a lepton pair (of mass M)



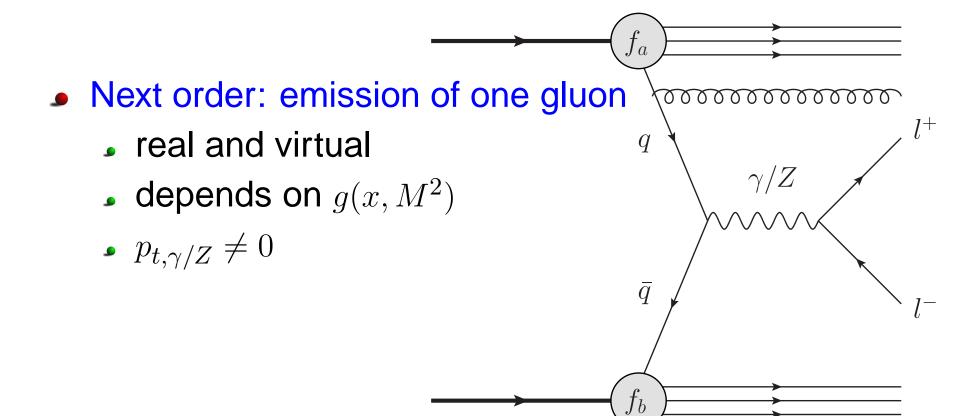
More differential cross-sections:

Ex. 1: lepton-pair rapidity (y)

$$\Rightarrow \delta(x_1 x_2 s - M^2)$$
$$\delta(y - \frac{1}{2} \log(x_1/x_2))$$

Ex. 2: Feynman x (x_F)

$$x_F = \frac{2}{\sqrt{s}}(p_{z,l^+} - p_{z,l^-}) \stackrel{\text{LO}}{=} x_1 - x_2$$
: also 2 δ 's



- Next order: emission of one gluon
- factorisation proven at ANY order

$$\frac{d\sigma}{dM^2} = \int dx_1 dx_2 dz_1 dz_2
\sum_{f} f_a(x_1, M^2) f_b(x_2, M^2) D_{ab}(z_1/x_1, z_2/x_2)
\frac{d\hat{\sigma}}{dM^2}(z_1, z_2; M^2)$$

- Next order: emission of one gluon
- factorisation proven at ANY order

$$\frac{d\sigma}{dM^2} = \int dx_1 dx_2 dz_1 dz_2
\sum_f f_a(x_1, M^2) f_b(x_2, M^2) D_{ab}(z_1/x_1, z_2/x_2)
\frac{d\hat{\sigma}}{dM^2}(z_1, z_2; M^2)$$

• ONLY case where the factorisation $\mathsf{PDF}_1 \otimes \mathsf{PDF}_2 \otimes \mathsf{ME} \text{ is proven,}$ otherwise it's just a "reasonable assumption"

Monte-Carlo generators

Parton cascades, hadronisation, Underlying Event, pileup: a realistic event is complicated!

⇒ Use of (Monte-Carlo) event generators to simulate full events

Monte-Carlo generators: fixed order

Perturbative computations are the base of everything But are often hard/impossible to compute analytically (especially for exclusive measurements)

⇒ use a fixed-order Monte-Carlo genrator

Monte-Carlo generators: fixed order

Perturbative computations are the base of everything But are often hard/impossible to compute analytically (especially for exclusive measurements)

- ⇒ use a fixed-order Monte-Carlo genrator
- Aim: provide signals and backgrounds for LHC studies (usually needed at NLO) See the LesHouche list of completed/wanted processes, e,g,
 - many jets
 - W+jets
 - H+jets
 - top ($t\bar{t}$ and single top)
 - SUSY

Monte-Carlo generators: fixed order

Perturbative computations are the base of everything But are often hard/impossible to compute analytically (especially for exclusive measurements)

- ⇒ use a fixed-order Monte-Carlo genrator
- Aim: provide signals and backgrounds for LHC studies (usually needed at NLO)
- Generate matrix elements + phase-space
- 2 big categories:
 LO (many legs) or NLO (includes virtual corrections)
- Tendency to automate!
- Plenty of them: Alpgen, MadGraph, NLOJet, MCFM, BlackHat, Golem,...

For full-event simulation, Monte-Carlo generators are a cornerstone

• parton cascade: collinear splittings (DGLAP-like) As seen in e^+e^- , they have the form

$$\frac{d^2P}{d\theta dz} = \alpha_s P(z) \frac{1}{\theta}$$

Leading terms ($\alpha_s^n \log^n(1/\theta)$) have angular ordering $\theta_1 > \theta_2 > \cdots > \theta_n$

Watch out: LO collinear branchings!!! e.g. Multi-jet processes hardly reliable

(alternatives like virtuality ordered but always LO

- parton cascade: collinear splittings (DGLAP-like)
- hadronisation: non-perturbative per se!
 e.g. Lund string fragmentations (form strings based on colour connections and fragment them)

- parton cascade: collinear splittings (DGLAP-like)
- hadronisation: non-perturbative per se!
- Multiple interactions/Underlying Event: hadronic beams carry colour i.e. interact strongly
 - Modelling
 - Then tuning to Tevatron (and LHC) data

- parton cascade: collinear splittings (DGLAP-like)
- hadronisation: non-perturbative per se!
- Multiple interactions/Underlying Event: hadronic beams carry colour *i.e.* interact strongly
- Matching to fixed-order LO generator: better description of multi-jet final-states

- parton cascade: collinear splittings (DGLAP-like)
- hadronisation: non-perturbative per se!
- Multiple interactions/Underlying Event: hadronic beams carry colour *i.e.* interact strongly
- Matching to fixed-order LO generator: better description of multi-jet final-states
- Progress towards NLO generator

- parton cascade: collinear splittings (DGLAP-like)
- hadronisation: non-perturbative per se!
- Multiple interactions/Underlying Event: hadronic beams carry colour i.e. interact strongly
- Matching to fixed-order LO generator: better description of multi-jet final-states
- Progress towards NLO generator
- Most commonly used: Pythia, Herwig, Sherpa... but others available
- more in the tutorials

W/Z production

Production:

- $q\bar{q}' \to W^{\pm}$
- $q\bar{q} \to Z$
- 14 TeV $\sigma_W \approx 20$ nb i.e. 200 W/s ($\mathcal{L}=10^{34}~\mathrm{cm}^2/\mathrm{s}$)

Decay:

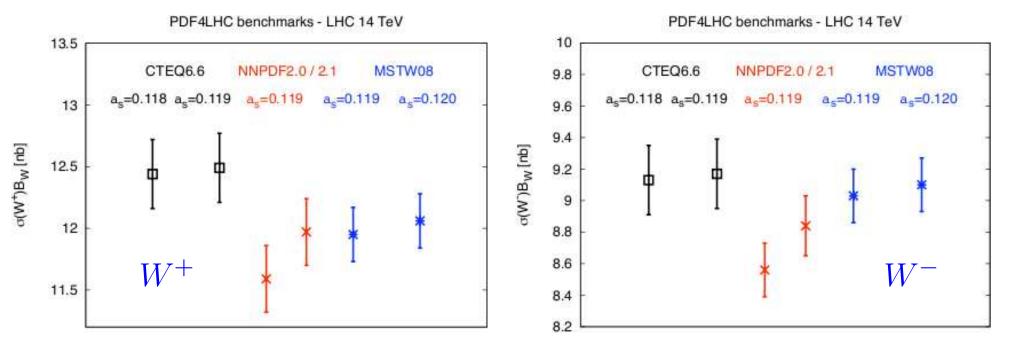
- $W \to q\bar{q} \to 2$ jets (BR $\approx 2/3$) $W \to \ell\nu_{\ell}$ (BR $\approx 1/3$)
- $Z o q \bar{q} o 2$ jets (BRpprox 70%) $Z o \ell \bar{\ell}$ (BRpprox 10%) $Z o \nu \bar{\nu}$ (BRpprox 20%)
- leptonic channel most convenient hadronic important for statistics!

W/Z physics

- not really a discovery channel...
- ... but important in many respects
 - often W/Z+jets
 - standard model tests/MC calibration
 - background to many searches e.g. top ($\rightarrow Wb$) or SUSY ($\not\! E_t$)
- W cross-section as a standard candle for luminosity measurements

W for lumi measurement

W cross-section as a standard candle for luminosity measurements



PDF main source of uncertainty

top physics

Production:

- Mostly $gg \to t\bar{t}$
- Tevatron: $\sigma_t \approx 4$ pb: discovery!
- LHC: $\sigma_t \approx 1$ nb: $\approx 10/\text{s}$ LHC \equiv top factory

Decay:

- Mostly $t \to Wb$ $t \to q\bar{q}b$ ($\approx 66\%$) or $t \to \ell\nu_{\ell}b$ ($\approx 33\%$)
- for $t\bar{t}$: 3 options
 - leptonic: not-so-easy because 2 neutrinos
 - semi-leptonic: ℓ , 4 jets (2b) and $\not\!\!E_t$ (the most convenient)
 - ▶ hadronic: 6 jets *i.e.* technical to reconstruct but \approx 45% of the stat!

top physics

top very important at the LHC

- precision mass measurement
- many new physics scenario involve the top (mostly because of its large mass)
 - ⇒ need to reconstruct as many tops as possible

top physics

top very important at the LHC

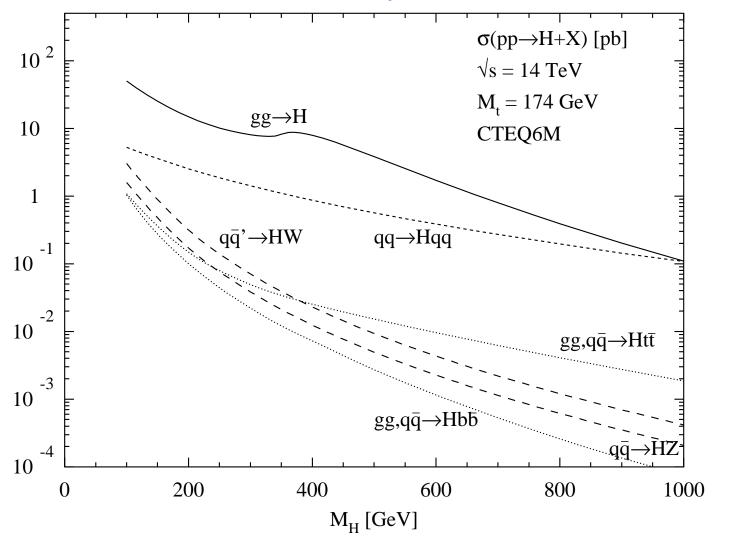
- precision mass measurement
- many new physics scenario involve the top (mostly because of its large mass)
 - ⇒ need to reconstruct as many tops as possible

Issues:

- W+jets background
- b mis-tagging
- combinatorial background (especially for full hadr.)
- efforts e.g. in boosted-top reconstruction

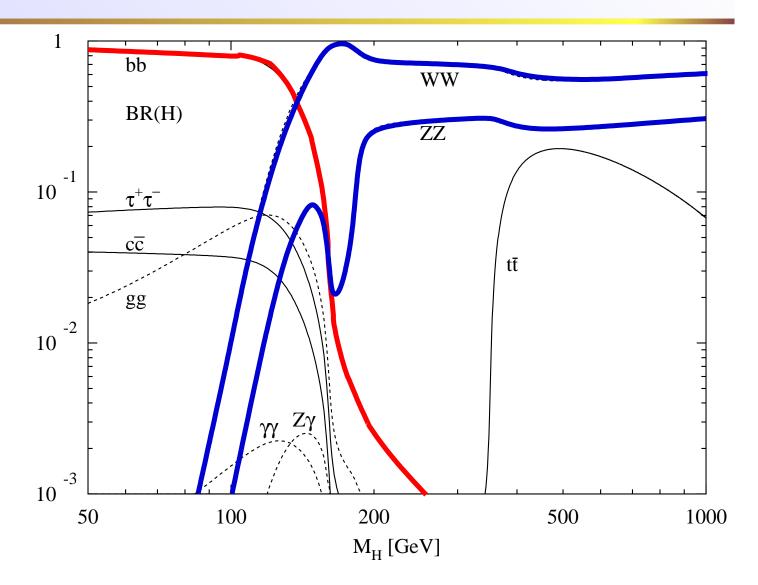
Higgs: production

Production at the LHC: mostly gg fusion (through top loop)



 $m_H=120~{\rm GeV}\Rightarrow\sigma_H^{({\rm L}0)}\approx21~{\rm pb}$ (vs 0.3 at the Tevatron)

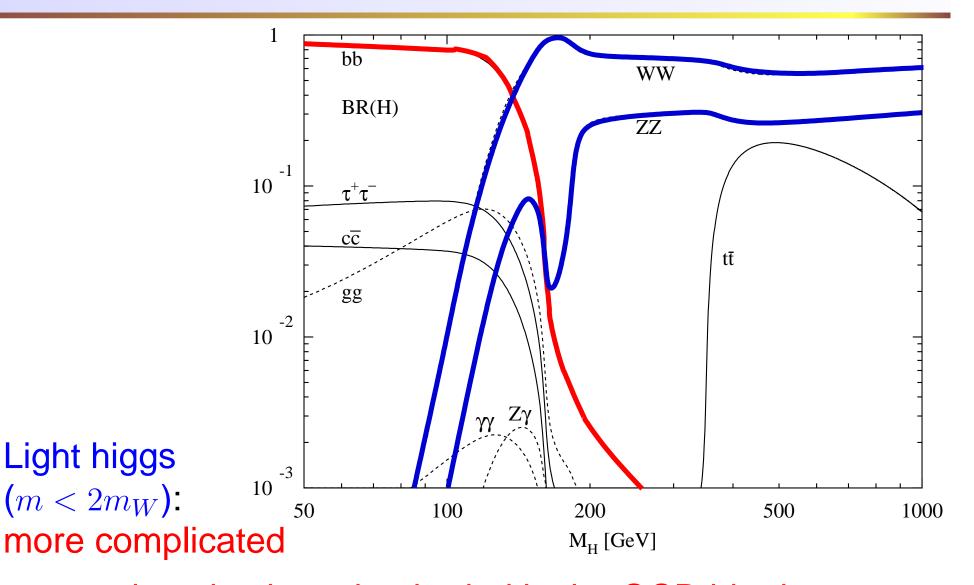
Higgs: decay



Heavy higgs $(m \gtrsim 2m_W)$:

mostly $H \to WW^{(*)}$ or $H \to ZZ$ the easiest situation (see *e.g.* Tevatron)

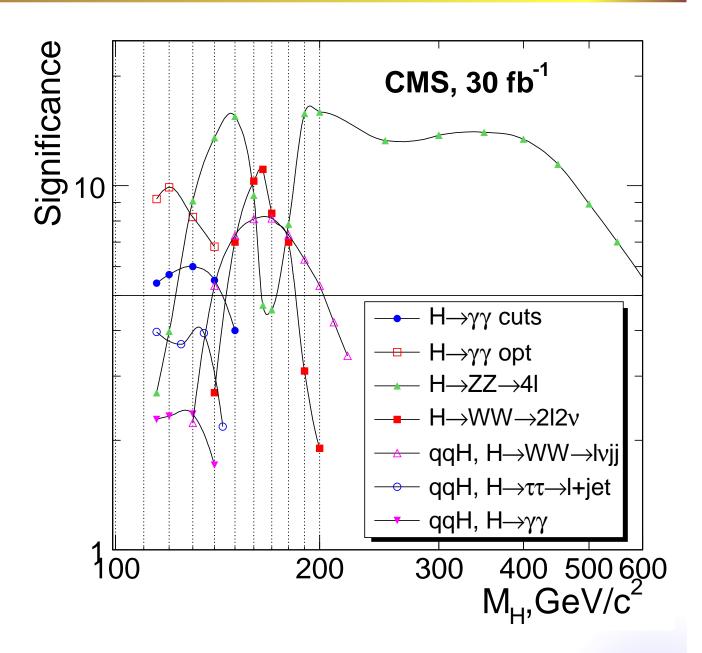
Higgs: decay



- bb →jets dominant but buried in the QCD bkgd
- $\gamma\gamma$ clean but only 0.1-0.3% of the events

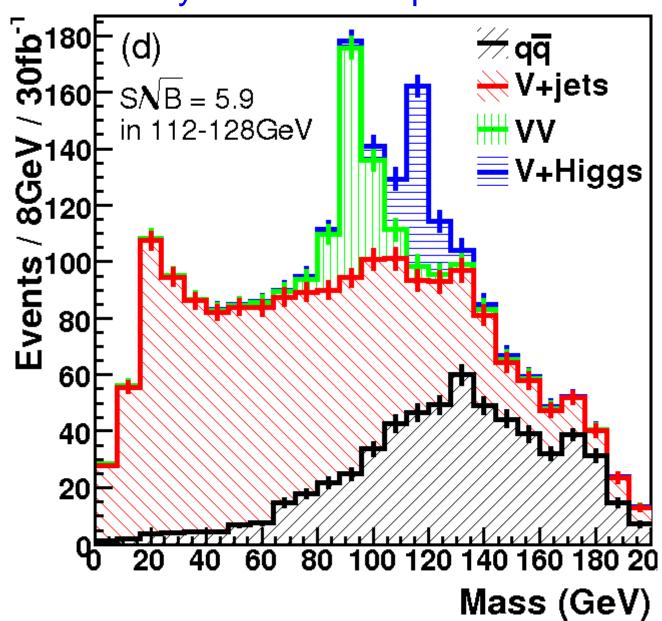
Higgs: discovery

 \sim 30 fb $^{-1}$ needed for 5σ discovery



Higgs: additional comments

• H o b ar b may be visible/helpful for boosted H + W/Z



Higgs: additional comments

• H o b ar b may be visible/helpful for boosted H + W/Z

- some additional ideas like
 - $H \rightarrow \tau \tau$
 - Higgs in SUSY events

Higgs: additional comments

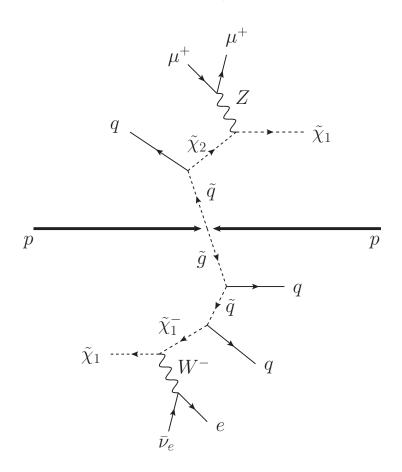
• H o b ar b may be visible/helpful for boosted H + W/Z

- some additional ideas like
 - $H \rightarrow \tau \tau$
 - Higgs in SUSY events
- Not the end of the story:
 also need to verify Higgs properties/couplings.
 - e.g. $t\bar{t}H$ may help
 - need for luminosity!

SUSY

Typical SUSY process:

- production of a pair of supersymmetric particles
- decay: SM particles + lightest SUSY particle (LSP)



SUSY

Typical SUSY process:

- production of a pair of supersymmetric particles
- decay: SM particles + lightest SUSY particle (LSP)

Typical SUSY signal:

- missing E_T (from the LSP + neutrinos)
- leptons
- jets (from QCD partons) \rightarrow excess at large p_t

SUSY

Typical SUSY process:

- production of a pair of supersymmetric particles
- decay: SM particles + lightest SUSY particle (LSP)

Typical SUSY signal:

- missing E_T (from the LSP + neutrinos)
- leptons
- jets (from QCD partons) \rightarrow excess at large p_t

Typical issues

- Need good determination of E_t
- ullet Control the multi-jet background at large p_t

Time for questions!