We use cookies to ensure you get the best experience on our website. By using the IFPA wiki, you consent to our use of cookies.
Part of IFPA Courses

Introduction to quantum field theory/Exercise ABJRC

From IFPA wiki

Introduction to quantum field theory

Grading assignment

To be submitted latest by 4 PM on Tue, Dec 12

The Lande g-factor is defined as the proportionality constant in the relationship: [math]\langle \Psi_{n\ell j}^{m'} \vert\mathbf{L} + g_{s} \mathbf{S} \vert\Psi_{n\ell j}^{m} \rangle = g_{n j \ell} \langle \Psi_{n\ell j}^{m'} \vert \mathbf{J} \vert \Psi_{n\ell j}^{m} \rangle\,.[/math] Using the fact that [math] \mathbf{J}\Psi_{n\ell j}^{m} [/math] can be written as a linear combination of [math]\Psi_{n\ell j}^{m^{\prime\prime}}[/math] involving all possible values of [math]m^{\prime\prime}[/math] (and fixed [math]n, \ell,\text{ and } j[/math]), show that

[math]g_{n j \ell} \equiv g_{j \ell} = 1 + (g_s - 1)\left[ \dfrac{j(j+1) - \ell(\ell+1) + 3/4}{2j(j+1)} \right].[/math]

Hence prove that, for a constant magnetic field [math]\mathbf{B} = B\hat{z},[/math] [math]\langle \Psi_{n\ell j}^{m'} \vert \delta H \vert \Psi_{n\ell j}^{m} \rangle = \left( \frac{e\hbar g_{j\ell}B}{2 m_e c} \right)m\delta_{mm^{\prime}}.\\ [/math]



IFPA Wiki maintained by Atri B.

ULgLogo.png     Logo-star.png