We use cookies to ensure you get the best experience on our website. By using the IFPA wiki, you consent to our use of cookies.
Courses

User talk:Atri Bhattacharya

From IFPA wiki

This is a warning alert.

Danger Panel
There is danger here

Teaching Timetable

08:30 09:00 09:30 10:00 10:30 11:00 11:30 12:00 13:00 13:30 14:00 14:30 15:00 15:30 16:00 16:30 17:00 17:30
M
T SPAT0071-1
W
T SPAT0071-1
F

Testing Math & Chem

Size of mathematical symbols: V[math]V[/math], α[math]\alpha[/math], 123[math]123[/math], tan[math]\tan[/math].

The latex character \vec seems to not work as required, test: [math]\vec{L} = \vec{r} \times \vec{p}[/math]

[math] \sin^2(\varphi) + \cos^2(\varphi) = 1 [/math]

[math]\ce{C6H5-CHO}[/math]

[math]\ce{{SO4^{2-}} + Ba^2+ -> BaSO4 v}[/math]

[math]\phi_n(\kappa) = \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R} \frac{\partial}{\partial R} \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR[/math]

[math] f(x) = \begin{cases} 1 & -1 \le x \lt 0 \\ \frac{1}{2} & x = 0 \\ 1 - x^2 & \mbox{otherwise} \end{cases} [/math]


[math]{}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z) = \sum_{n=0}^\infty \frac{(a_1)_n\cdots(a_p)_n}{(c_1)_n\cdots(c_q)_n} \frac{z^n}{n!}[/math]

Test of DisplayMath template

Two spin-½ particles of masses [math]m_1[/math] and [math]m_2[/math], interact via a potential that may be expressed as:
[math]V = \dfrac{-e^2}{r}\left(1 + \dfrac{b}{r}\sigma^{(1)}\cdot \sigma^{(2)} \right),[/math]

where [math]\sigma^{(i)}[/math] corresponds to the [math]i[/math]-th particle; [math]r = \lvert \vec{r}_{1} - \vec{r}_2 \rvert[/math] represents the magnitude of relative separation between the two particles; and [math]b[/math] is an arbitrary constant. Determine the bound-state energy spectrum of the combined two-particle system. What condition(s) do you need to impose upon [math]b[/math] to avoid unphysical eigenstates?

Numbered Equations

Two spin-½ particles of masses [math]m_1[/math] and [math]m_2[/math], interact via a potential that may be expressed as:

[math]V = \dfrac{-e^2}{r}\left(1 + \dfrac{b}{r}\sigma^{(1)}\cdot \sigma^{(2)} \right),[/math](1)

where [math]\sigma^{(i)}[/math] corresponds to the [math]i[/math]-th particle; [math]r = \lvert \vec{r}_{1} - \vec{r}_2 \rvert[/math] represents the magnitude of relative separation between the two particles; and [math]b[/math] is an arbitrary constant. Determine the bound-state energy spectrum of the combined two-particle system. What condition(s) do you need to impose upon [math]b[/math] to avoid unphysical eigenstates?

And then there was another:

[math]V = \dfrac{-e^2}{r}\left(1 + \dfrac{b}{r}\sigma^{(1)}\cdot \sigma^{(2)} \right),[/math](2)

--Atri B. 04:03, 14 May 2017 (UTC)

Bibitem tests

Test bibitem references [1,2,3,4,5,6].

  1. Y.S.Jeong, A.Bhattacharya, R.Enberg, C.S.Kim, M.H.Reno, I.Sarcevic and A.Stasto, J. Phys. Conf. Ser. 888 (2017) no.1, 012117, doi:10.1088/1742-6596/888/1/012117.
  2. Leslie Lamport, \LaTeX: a document preparation system, Addison Wesley, Massachusetts, 2nd edition, 1994.
  3. A. Bhattacharya, R. Enberg, Y. S. Jeong, C. S. Kim, M. H. Reno, I. Sarcevic and A. Stasto, JHEP 1611 (2016) 167, doi:10.1007/JHEP11(2016)167, [arXiv:1607.00193 [hep-ph]].
  4. A.Bhattacharya, R.Gandhi, W.Rodejohann and A.Watanabe, "The Glashow resonance at IceCube: signatures, event rates and [math]pp[/math] vs. [math]p\gamma[/math] interactions,", JCAP 1110 (2011) 017, doi:10.1088/1475-7516/2011/10/017, [arXiv:1108.3163 [astro-ph.HE]].
  5. A.Bhattacharya, A.Esmaili, S.Palomares-Ruiz and I.Sarcevic, JCAP 1707 (2017) no.07, 027, doi:10.1088/1475-7516/2017/07/027, [arXiv:1706.05746 [hep-ph]].
  6. A.Bhattacharya, R.Enberg, M.H.Reno, I.Sarcevic and A.Stasto, JHEP 1506 (2015) 110, doi:10.1007/JHEP06(2015)110, [arXiv:1502.01076 [hep-ph]].



About

Contact

IFPA Wiki maintained by Atri B.

ULgLogo.png     Logo-star.png