We use cookies to ensure you get the best experience on our website. By using the IFPA wiki, you consent to our use of cookies.
Part of IFPA Courses

Introduction to quantum field theory/Central Potential (Redirected from Introduction to quantum field theory/H atom)

From IFPA wiki

Introduction to quantum field theory

Mathematical Prerequisites

  • Calculus in curvilinear coordinates, specifically spherical polar coordinates
  • Separation of variables in PDE's
  • Legendre and Associated Legendre Functions: At the level of Arfken & Weber, including solving the Legendre differential equation by using a series expansion. For a quick refresher, see Lectures by Hamid Meziani (Florida Int. Univ.), specifically Lecture 13 on the topic.


Exercise AB1

Atri B. 10:21, 21 September 2017 (UTC)

  1. Explicitly transforming from the Cartesian coordinates, show that in the Spherical-Polar coordinate system [math](r, \theta, \varphi)[/math],
    [math]\nabla^2_{(r,\theta,\varphi)} = \frac{1}{r^2}\left( \frac{\partial}{\partial r} r^{2} \frac{\partial}{\partial r} \right) + \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \left( \sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2\sin^2\! \theta} \frac{\partial^2}{\partial \varphi^2}.[/math]
  2. Show by explicitly constructing a series solution [math]P_{\ell}(x) = \sum_{n=0}^{\infty} a_{n}x^{n}[/math] to the Legendre equation:
    [math]\frac{d}{dx}\left[ \left( 1-x^2 \right) \frac{dP_{\ell}(x)}{dx} \right] + \ell \left( \ell+1 \right) P_{\ell}(x) = 0 [/math]
    that the series terminates if and only if [math]\ell \in \mathbb{Z}[/math]. This is also true for the Associated Legendre functions, [math]P_{\ell}^{m}(x)[/math], which may be obtained by repeatedly differentiating the Legendre polynomials.
  3. Show that for a fixed [math]\ell[/math], [math]P_{\ell}^{m}(x)[/math] and [math]P_{\ell}^{m^{\prime}}(x)[/math] are orthogonal to each other for any [math]m \neq m^{\prime}[/math]. The Rodrigues' formula for Associated Legendre functions: [math]P_{\ell}^{m}(x) = \frac{(-1)^m}{2^{\ell} \ell!}\left( 1-x^2 \right)^{m/2}\frac{d^{\ell+m}}{dx^{\ell+m}} \left( x^2-1 \right)^\ell[/math] may be useful.

Exercise AB2

16:37, 12 October 2017 (UTC)

    • Show by explicit computation in the Cartesian coordinates, that the three components of the angular momentum operator do not commute amongst each other, but instead: [math]\left[ \hat{L}_x, \hat{L}_y \right] = i \hbar \hat{L}_z[/math], and so on.
    • Deduce the uncertainty principle for any two components of the angular momentum, e.g. [math]\hat{L}_{x}, \hat{L}_{y}[/math].
    • In Problem Set 1 you were asked to prove [math] e^{\hat{A}} e^{\hat{B}} = e^{\hat{A}+\hat{B}}e^{\frac{1}{2}\left[ \hat{A},\hat{B} \right]} [/math]. By explicitly computing the LHS and RHS of the equation [math] e^{\alpha \hat{A}} e^{\alpha \hat{B}} = e^{\alpha(\hat{A}+\hat{B})}e^{\frac{1}{2}\alpha\left[ \hat{A}, \hat{B} \right]} [/math] up to the second order in [math]\alpha[/math] (i.e up to [math]\alpha^2[/math]), show that this is manifestly untrue for the angular momenta operators, e.g. [math] \hat{L}_{x} [/math] and [math] \hat{L}_{y} [/math]. What would be the special condition for two generic operators [math]\hat{A}[/math] and [math]\hat{B}[/math] under which this equality will indeed be true?
  1. Show by explicit transformation from the Cartesian coordinates [math](x, y, z)[/math] (where [math]L_z = x \frac{\hbar}{\imath} \frac{\partial}{\partial y} - y \frac{\hbar}{\imath} \frac{\partial}{\partial x}[/math], and so on) to the Spherical-Polar coordinates [math](r, \theta, \varphi)[/math], that
    [math]\mathbf{L}^2 \equiv L_{x}^2 + L_{y}^2 + L_{z}^2 = -\frac{\hbar^2}{\sin^2\!\theta}\left[ \sin\theta \frac{\partial}{\partial\theta} \left( \sin\theta \frac{\partial}{\partial \theta} \right) + \frac{\partial^2}{\partial\varphi^2} \right].[/math]
  2. Using the forms of the angular momentum raising and lowering operators [math]L_{\pm}[/math] in the Spherical-Polar coordinates, and the definition of spherical harmonics,
    [math]Y_{\ell}^{m}(\theta,\varphi) = (-1)^{m}\sqrt{\frac{2\ell+1}{4\pi}\frac{(l-m)!}{(l+m)!}}P_{\ell}^{m}(\cos\theta)e^{\imath m \varphi}\,,[/math]
    show that
    [math]L_{+} Y_{\ell}^{m}(\theta,\varphi) = \hbar \sqrt{\ell(\ell+1) - m(m+1)}\, Y_{\ell}^{m+1}(\theta,\varphi)[/math]
    [math] L_{-} Y_{\ell}^{m}(\theta,\varphi) = \hbar \sqrt{\ell(\ell+1) - m(m-1)}\, Y_{\ell}^{m-1}(\theta,\varphi).[/math]
    Recall that [math]L_{\pm} = \hbar e^{\pm \imath \varphi}\left[ \pm\frac{\partial}{\partial \theta} + \imath \cot\theta \frac{\partial}{\partial \varphi} \right].[/math]



IFPA Wiki maintained by Atri B.

ULgLogo.png     Logo-star.png