We use cookies to ensure you get the best experience on our website. By using the IFPA wiki, you consent to our use of cookies.
Part of IFPA Courses

Introduction to quantum field theory/Spin

From IFPA wiki

Introduction to quantum field theory

Exercise AB4

10:47, 1 November 2017 (UTC)

  1. For any two three-dimensional vectors [math]\displaystyle{ \mathbf{A} }[/math] and [math]\displaystyle{ \mathbf{B} }[/math], prove that
    [math]\displaystyle{ (\boldsymbol{\sigma} \cdot \mathbf{A})(\boldsymbol{\sigma} \cdot \mathbf{B}) = (\mathbf{A} \cdot \mathbf{B}) + \imath \boldsymbol\sigma \cdot (\mathbf{A} \times \mathbf{B})\,. }[/math]
  2. Derive the [math]\displaystyle{ S_{z}, S_{x},\text{ and } S_{y} }[/math] matrices for the case of a spin 1 particle.
  3. Wavefunctions for a particle with some intrinsic property (such as spin) which can assume a fixed, finite number of components are often expressed as row vectors of functions of space (also called fields). Thus, wavefunctions for a spin-½ particle may be written as
    [math]\displaystyle{ \Psi(\mathbf{x}) = \psi_{+}(\mathbf{x})\left\vert+\right\rangle + \psi_{-}(\mathbf{x})\left\vert-\right\rangle = \psi_{+}(\mathbf{x})\begin{pmatrix} 1 \\ 0 \end{pmatrix} + \psi_{-}(\mathbf{x})\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \psi_{+}(\mathbf{x}) \\ \psi_{-}(\mathbf{x}) \end{pmatrix}. }[/math]
    The most general rotation operation that effects a spatial rotation and a corresponding rotation of the spin components is defined as [math]\displaystyle{ R_{\hat{\mathbf{n}}}(\theta) = e^{i\theta\hat{\mathbf{n}}\cdot\hat{\mathbf{J}}}\,, }[/math] where [math]\displaystyle{ \hat{\mathbf{n}} }[/math] represents a unit vector along some physical direction. Rotations by 2π affect the angular momentum eigenstates as follows: [math]\displaystyle{ R(2\pi) = (-1)^{2j}\left\vert j,m \right\rangle\,, }[/math] irrespective of the direction [math]\displaystyle{ \hat{\mathbf{n}} }[/math].
    1. Show that for a particle of spin-0, rotation by an infinitesimal angle ε about the z-axis leads to the identification of [math]\displaystyle{ J_{z} = -i\hbar (x\partial/\partial y - y \partial/\partial x) \equiv L_{z}\,. }[/math](Only to the first order in ε.)
    2. Show that the matrix corresponding to the rotation operator in the spin state along some direction [math]\displaystyle{ \hat{\mathbf{n}} = (\sin\theta \cos\varphi, \sin\theta \sin\varphi, \cos\theta) }[/math] is given by [math]\displaystyle{ \hat{\mathbf{n}}\cdot\mathbf{S} = \tfrac{1}{2}\hbar\hat{\mathbf{n}}\cdot\boldsymbol{\sigma}\,, }[/math] where
      [math]\displaystyle{ \hat{\mathbf{n}}.\boldsymbol{\sigma} = \begin{pmatrix} \cos\theta & e^{-\imath\varphi}\sin\theta \\ e^{\imath\varphi}\sin\theta & -\cos\theta \end{pmatrix} \,. }[/math]
  4. Given two different particles in angular momentum states [math]\displaystyle{ \left\vert j_{1}, m_{1} \right\rangle }[/math], and [math]\displaystyle{ \left\vert j_{2}, m_{2} \right\rangle }[/math], we define [math]\displaystyle{ \left\vert j_{1}, j_{2}, m_{1}, m_{2} \right\rangle \equiv \left\vert j_{1}, m_{1}\right\rangle \left\vert j_{2}, m_{2} \right\rangle }[/math]. If the two particles interact to produce a composite particle in the angular momentum state [math]\displaystyle{ \left\vert J, M \right\rangle \equiv \left\vert j_{1}, j_{2}, J, M \right\rangle }[/math], then one can write, using the completeness relation [math]\displaystyle{ \sum_{m}\left\vert j,m \right\rangle \left\langle j,m \right\vert = \mathbb{I} }[/math] for any fixed [math]\displaystyle{ j }[/math]
    [math]\displaystyle{ \left\vert j_{1}, j_{2}, J, M \right\rangle = \sum_{m_{1},m_{2}}\left\vert j_{1}, j_{2}, m_{1}, m_{2} \right\rangle \left\langle j_{1}, j_{2}, m_{1}, m_{2} \vert j_{1}, j_{2}, J, M \right\rangle. }[/math]
    The coefficients [math]\displaystyle{ \left\langle j_{1}, j_{2}, m_{1}, m_{2} \vert j_{1}, j_{2}, J, M \right\rangle }[/math] are called the Clebsch-Gordan coefficients, and are often written in a slightly shortened form: [math]\displaystyle{ \left\langle j_{1}, j_{2}, m_{1}, m_{2} \vert J, M \right\rangle. }[/math]
    1. Show by considering rotations by 2π for the [math]\displaystyle{ \left\vert j_{1}, j_{2}, m_{1}, m_{2} \right\rangle }[/math] and [math]\displaystyle{ \left\vert j_{1}, j_{2}, J, M \right\rangle }[/math] states, that the coefficient [math]\displaystyle{ \left\langle j_{1}, j_{2}, m_{1}, m_{2} \vert J, M \right\rangle }[/math] vanishes unless [math]\displaystyle{ j_{1} + j_{2} + J \in \mathbb{Z}\,. }[/math]
    2. Argue that [math]\displaystyle{ \left\langle j_{1}, j_{2}, j_{1}, j_{2} \vert j_{1}, j_{2}, J, M \right\rangle = \delta_{J}^{j_{1}+j_{2}}\delta_{M}^{j_{1}+j_{2}}\,. }[/math]
    3. What are the linearly independent states corresponding to [math]\displaystyle{ M = j_{1} + j_{2} - 1 }[/math]? Calculate the corresponding Clebsch-Gordan coefficients.



Remember that the components of the spin angular momentum operators were defined along the same [math]\displaystyle{ x, y, \text{ and } z }[/math] directions of the orbital angular momentum. So, a spatial rotation that alters these directions also affects the components of the spin angular momentum [math]\displaystyle{ S_{x}, S_{y},\text{ and } S_{z}. }[/math]


About

Contact

IFPA Wiki maintained by Atri B.

ULgLogo.png     STAR Institute logo.svg